The vertical asympototes of f(x) are at x = -6 and x = 6
Step-by-step explanation:
To find the vertical asymptote(s) of a rational function,
- Equate the denominator by 0
- Solve it for x
- If x = a, then the vertical asymptote is at x = a
∵ 
- Equate the denominator x² - 36 by 0
∵ x² - 36 = 0
- Add 36 to both sides
∴ x² = 36
- Take √ for both sides
∴ x = ± 6
∴ There are vertical asymptotes at x = -6 and x = 6
The vertical asympototes of f(x) are at x = -6 and x = 6
Learn more:
You can learn more about the asymptotes in brainly.com/question/6459599
#LearnwithBrainly
Answer:
59.5
Step-by-step explanation:
1st tree to shadow ratio: 17:10
Plug the numbers in to get x:35
17:10=x:35
17/10=x/35
Multiply both sides by 35
595/10=x
59.5=x
First thing to do is to solve each of these for y. The first one is y=-4x-3; the second one is y=4x-21; the third one is y=4x+21; the fourth one is y=-4x+3. From that you can tell the positive slopes are found in the second and third equations. Those are the ones we will test now for the point (3, -9). y=-9 and x=3, so let's fill in accordingly. The second equation filled in is -9=4(3)-21. Does the left side equal the right when we do the math? -9=12-21 and -9=-9. So the second one works. Just for the sake of completion, let's do the same with the third: -9=4(3)+21. Does -9=12+21? Of course it doesn't. Our equation is the second one above, y+9=4(x-3).
Trapezium A is the trapezium you start with. And then you are expected to reflect it on the y axis (which is just the vertical line x=0)