1st quartile: 11
median: 38.50000
3rd quartile: 45
<h3>According to the given information:</h3>
- Order these numbers in increasing order: 6, 7, 15, 36, 41, 43, 47, 49
- There is a 38.5 median (it is the mean of 36 and 41 - the pair of middle entries).
- 6,7,15,36, or the left-most half of the data, make up the sample.
- The median of the lower half is 11, which is the first quartile (it is the mean of 7 and 15 - the pair of middle entries).
- 41, 43, 47, and 49, which are the data points in the upper half, are to the right of the median.
- The median of the upper half is 45 in the third quartile (it is the mean of 43 and 47 - the pair of middle entries).
- The biggest value deviates 10.5 from the median (49-38.5)
Measure descriptive statistics
1st quartile: 11
median: 38.50000
3rd quartile: 45
To know more about quartile visit:
brainly.com/question/8737601
#SPJ4
I understand that the question you are looking for is :
2 Drag the tiles to the boxes to form correct pairs. Match the values associated with this data set to their correct descriptions. {6, 47, 49, 15, 43, 41, 7, 36} first quartile 38.5 median 11 third quartile 10.5 the difference of the largest value and the median 45
The last expression: (16-8)x2+4=8x6=48
Answer:
i dont know toooo pls answer it fast......................................
Step-by-step explanation:
i need it..........................
Answer:
y = (2/5) OR y = (6/5)
Step-by-step explanation:
The first step is isolating the expression within the absolute value bars. The first thing we can do is subtract both sides by 8. If we do that, we get -2|4-5y| = -4. Now, to completely isolate the absolute value, we would have to divide by -2. This yields |4 - 5y| = 2. Finally, we can remove the absolute value bars. However, to do this, we need to first understand what an absolute value bar does to an equation. Lets say that |x| = 2. Absolute value describes the DISTANCE of some quantity from 0 (on the number line). Therefore, x (which is inside the absolute value bars) can be either positive or negative 2 (they are BOTH two units away from 0). Similarly, in this case, (4 - 5y) can either be 2 or -2 (because the absolute value of both is 2). Now we have two possible solutions to solve for:
4 - 5y = 2 OR 4 - 5y = -2
5y = 2 OR 5y = 6
y = (2/5) OR y = (6/5)
If we plug both of these answers back into the equation we can see that they both check out.
<span> (3 + 1/4 u^4 − 2/3 u^9) du</span>