Answer:
Line 1: the spacing is even the whole time
Line 2: the spacing increases over time
Line 3: the spacing decreases over time
hope this helps!
Answer:
d. from the equilibrium position to the bottom and then back to the equilibrium.
g. from the top position to the bottom and then back to the top.
h. from the bottom position to the top and then back to the bottom.
Explanation:
It is the case of SHM or Simple Harmonic Motion. Firstly, there is a need to understand the time interval or time period. The standard definition of time period in simple harmonic motion is
"the time period required for the system to complete its one cycle"
Now one have to consider that the system given above, the motion of mass attached to spring will follow the path of motion from equilibrium point to bottom to equilibrium point to top, then equilibrium point to the bottom and so on.
to choose right answer you must have to consider the option, in which the starting point and ending point of the mass is same. If mass starts from top, the time it will take to reach on top again, will be defined as its time period and so in the case of bottom or equilibrium as starting point. Hence, "d", "g" and "h" are right answers.
Answer:
Action and reaction are equal but act in opposite directions
Answer:
(i) C=3Co
(ii) V=Vo/3
(iii) Decrease
Explanation:
(i) capacitance increase K times.
(ii) As charge remain constant so by using Q=CV
you will get potential decrease by K time.
(iii) Decrease due to induced electric field inside
dielectric material..
E=Eo-Eind
Explanation:
heyaaa hope it helps ☺️✌️
Answer:
Because the gravitational attraction of the Sun hold them in motion around it
Explanation:
For an object travelling in a straight path at constant velocity, the net force acting on the object must be zero.
The planets in the Solar System, however, do not experience a zero net force: in fact, the Sun exerts a gravitational attraction on them, whose magnitude is given by

where
G is the gravitational constant
M is the mass of the Sun
m is the mass of the planet
r is the average distance between the Sun and the planet
Due to the presence of this force, the Sun makes the planets 'deviating' from their straight path, forcing them to following an elliptical path around the Sun.