Answer:
<em>K =400000 J</em>
Explanation:
<u>Kinetic Energy</u>
Is the energy an object has due to its state of motion. It's proportional to the square of the speed.
The equation for the kinetic energy is:

Where:
m = mass of the object
v = speed at which the object moves
The kinetic energy is expressed in Joules (J)
The car has a mass of m=2000 Kg and travels at v=20 m/s. Calculating the kinetic energy:

Calculating:
K =400000 J
<span>more lines = a lot of electrons returning back to ground state from same level</span>
Oxygen and carbon dioxide
Stark contrast to paths on energy surfaces or even mechanistic reactions, rule-based and inductive computational approaches to reaction prediction mostly consider only overall transformations. Overall transformations are general molecular graph rearrangements reflecting only the net change of several successive mechanistic reactions. For example, Figure 1 shows the overall transformation of an alkene interacting with hydrobromic acid to yield the alkyl bromide along with the two elementary reactions which compose the transformation.
For pressurized water reactors the coolant is not permitted to boil in the core of the PRW, however the coolant in boiling water reactors is permitted to do so in the core of BWR. Pressurized water reactors have an indirect cycle. Whereas, the boiling water reactors go through a direct cycle. Both are light water reactors.