Answer:
Explanation:
Normally, under anaerobic condition in yeast, pyruvate produced from glycolysis leads to the production of ethanol as shown below.
pyruvate ⇒ acetaldehyde + NADH ⇒ ethanol + NAD
The pyruvate is converted to acetaldehyde by the enzyme, pyruvate decarboxylase. It should be NOTED that carbon dioxide is released in this step. The acetaldehyde produced in the "first step" is then converted to ethanol by the enzyme alcohol dehydrogenase. It must be noted from the above that the steps are irreversible.
If a mutated strain of yeast is unique because it does not produce alcohol and lactic acid (which is referred to as toxic acid in the question); thus having a high level of pyruvate because of the presence of a novel enzyme. <u>The function of this novel enzyme will most likely be the conversion of acetaldehyde in the presence of carbondioxide back to pyruvate; thus making that step reversible</u>. This could be a possible explanation for the high level of pyruvate present in the yeast.
The laboratory is full of chemicals and other hazardous substances. So, it is very important to keep all the safety precautions before entering in the laboratory to avoid any mis-happening.
Here are some precautions, which one should take before entering lab:
- Before entering the laboratory one must wear all the safety equipment including gloves, goggles, apron, and others.
- Make sure you are not wearing any inflammable thing and you are fully covered, as in some laboratory, harmful radiation are also present.
- Make sure your hair are tied in properly and the shoes are covered.
Answer:
The stem cells possess two cardinal characteristics, that is, self-renewal and differentiation. The examples are embryonic stem cells and hematopoietic stem cells. The genetically determined immunodeficiency in a person is generally a result of the defective gene in the hematopoietic stem cells that produce red blood cells, white blood cells, and other components of blood.
The examples of genetically determined immunodeficiency diseases are SCID, X-linked Agammaglobulinemia, and others. The individual suffering from genetically determined immunodeficiency exhibits a defective gene in hematopoietic stem cells. There are two methods of treatment, that is, stem cell therapy and gene therapy.
The procedure of stem cell transplantation generally comprises HLA matching, in which the main step is to prevent graft rejection. It is succeeded by harvesting of hematopoietic stem cells from the HLA matched donor. The step of conditioning is performed to eradicate the recipient HSCs by radiotherapy and chemotherapy succeeded by the transfer of harvested donor HSCs to the patient or the recipient.
A person cannot receive his own stem cells as his or her each and every cell is defective in that specific gene accountable for the disease.
Answer:
but no the answer is spine which can also be called vertebral column so is B