Answer:
Thermosensitive liposomes (TSL) are promising tools used to deliver drugs to targeted region when local hyperthermia is applied (∼40–42°C) which triggers the membrane phase transformation from a solid gel-like state to a highly permeable liquid state. Selective lipid components have been used to in TSL formulations to increase plasma stability before hyperthermia and speed drug release rate after. Two generations of TSL technology have been developed. The traditional thermal sensitive liposomes (TTSL) have utilized DPPC and DSPC as a combination. The second generation, lysolipid thermally sensitive liposomes (LTSL) technology, has been developed with incorporation of lysolipids that form stabilized defects at phase transition temperature. LTSL maintains certain favorable attributes:
High percentage of lysolipids incorporation;
Minimum leakage for therapeutical drugs encapsulation;
Ultrafast drug release upon heating (3.5 times enhanced compared to TTSL). For example, ThermoDox, a commonly used LTSL drug for cancer, has been reported to release 100% of the encapsulated doxorubicin within 30s;
First and most successful formulation for intravascular drug release.
Explanation:
https://www.creative-biostructure.com/Lysolipid-Thermally-Sensitive-Liposomes-Production-612.htm
Answer:
1. Map-based genome sequencing: a; c; f; g
2. Whole-genome shotgun sequencing: b
3. Both sequencing methods: d; e
Explanation:
Map-based genome sequencing is a method that makes use of a reference genome sequence in order to determine the relative position of the DNA fragments before they are sequenced. This method is useful to determine the position of repetitive DNA fragments (for example, duplicated genes, repetitive non-coding regions, etc.) and Transposable Elements. Therefore, map-based genome sequencing is a suitable approach for large genomes (which are usually composed of repetitive sequences). On the other hand, in whole-genome shotgun sequencing, DNA sequences are obtained before the correct order of these DNA fragments is known. In this method, the genome is fragmented randomly into small DNA sequences (between 100 and 1000 base pairs), which are subsequently sequenced through the chain-termination sequencing approach (i.e., Sanger sequencing) and finally ordered by using bioinformatic tools that assemble overlapping reads.