If x - 4 ≥ 0, then |x - 4| = x - 4, so
G(x) = F(x) ⇒ 3x + 2 = (x - 4) + 2
⇒ 3x + 2 = x - 2
⇒ 2x = -4
⇒ x = -2
Otherwise, if x - 4 < 0, then |x - 4| = -(x - 4), so
G(x) = F(x) ⇒ 3x + 2 = -(x - 4) + 2
⇒ 3x + 2 = -x + 6
⇒ 4x = 4
⇒ x = 1
However,
• when x = -2, we have
G(-2) = 3(-2) + 2 = -4
F(-2) = |-2 - 4| + 2 = 8
• when x = 1, we have
G(1) = 3(1) + 2 = 5
F(1) = |1 - 4| + 2 = 5
so only x = 1 is a solution to G(x) = F(x).
This is the concept of algebra, given that ab^4=12 and a^5b^5=7776, the value if a will be found as follows:
ab^4=12
a=12/b^4
also;
a^5=7776/b^5
thus;
a=(7776/b^5)^(1/5)
a=6/b
thus the value of a will be:
6/b=12/b^4
dividing both sides by b we get:
6=12/b^3
multiplying both sides by b^3 we get
6b^3=12
b^3=2
hence;
b=2^(1/3)
The common factor is 7 so its
7(2x - 3)
Y2-Y1
Over X2-X1 and then there is your slode
Answer:
- m = (2-(-2))/(2-(-2)) = 4/4 = 1
- y +2 = 1(x +2)
Step-by-step explanation:
The point-slope form of the equation for a line with slope m through point (x1, y1) is ...
y -y1 = m(x -x1)
To find the slope of the line, find the ratio of the difference in y-values of the points to the difference in corresponding x-values. Here, the slope is ...
m = (2 -(-2))/(2 -(-2)) = 4/4 = 1 . . . work to compute slope
The problem statement tells you x1 = -2, y1 = -2. Putting the numbers in to the point-slope form gives ...
y -(-2) = 1(x -(-2))
y + 2 = x + 2 . . . equation form with m, (x1, y1) filled in
__
The answer at the top leaves the slope shown as 1. We don't know how much simplification you are expected to do. Obviously, this <em>could</em> be simplified to y=x, but then the use of (-2, -2) for the point would not be obvious.