√ (1/144) = 1/12
Because √1 = 1 ; √144 = 12
⇒ C
Answer:
France = 15, Italy = 14, Korea = 13
Step-by-step explanation:
We are trying to find 3 consecutive integers whose sum is 42, then the highest integer will be France's gold medal count since they won the most, the second highest will be Italy, and the lowest integer will be Korea.
let n be the first/smallest integer, since they are consecutive, the next two integers are n+1 and n+2. Summing these, we get n + (n+1) + (n+2) = 42. Solve to get n = 13, n + 1 = 14, and n + 2 = 15
Answer:

Step-by-step explanation:
Step 1: Define
Difference Quotient: 
f(x) = -x² - 3x + 1
f(x + h) means that x = (x + h)
f(x) is just the normal function
Step 2: Find difference quotient
- <u>Substitute:</u>
![\frac{[-(x+h)^2-3(x+h)+1]-(-x^2-3x+1)}{h}](https://tex.z-dn.net/?f=%5Cfrac%7B%5B-%28x%2Bh%29%5E2-3%28x%2Bh%29%2B1%5D-%28-x%5E2-3x%2B1%29%7D%7Bh%7D)
- <u>Expand and Distribute:</u>
![\frac{[-(x^2+2hx+h^2)-3x-3h+1]+x^2+3x-1}{h}](https://tex.z-dn.net/?f=%5Cfrac%7B%5B-%28x%5E2%2B2hx%2Bh%5E2%29-3x-3h%2B1%5D%2Bx%5E2%2B3x-1%7D%7Bh%7D)
- <u>Distribute:</u>

- <u>Combine like terms:</u>

- <u>Factor out </u><em><u>h</u></em><u>:</u>

- <u>Simplify:</u>

Answer:



Therefore,
Option (A) is false
Option (B) is false
Option (C) is false
Step-by-step explanation:
Considering the graph
Given the vertices of the segment AB
Finding the length of AB using the formula







units
Given the vertices of the segment JK
From the graph, it is clear that the length of JK = 5 units
so
units
Given the vertices of the segment GH
Finding the length of GH using the formula





![\mathrm{Apply\:radical\:rule\:}\sqrt[n]{a^n}=a,\:\quad \mathrm{\:assuming\:}a\ge 0](https://tex.z-dn.net/?f=%5Cmathrm%7BApply%5C%3Aradical%5C%3Arule%5C%3A%7D%5Csqrt%5Bn%5D%7Ba%5En%7D%3Da%2C%5C%3A%5Cquad%20%5Cmathrm%7B%5C%3Aassuming%5C%3A%7Da%5Cge%200)
units
Thus, from the calculations, it is clear that:
Thus,



Therefore,
Option (A) is false
Option (B) is false
Option (C) is false
Answer:
742
700
1000
Please Mark it as brainlist answer.