<h2>
Hello!</h2>
The answer is: The population age 12 or under was 3680.
<h2>
Why?</h2>
If in 2010 the population of Kignsford was 8000, and by 2014 the population had increased by 15% we need to calculate the total population and then, calculate how many people was age 12 or under.
We must remember that we cannot work with percentage values, so, to make 15% a real number, we need to divide it by 100:

So,
Calculating the population by 2014, we have:

Then, substituting we have:

Now, calculating the population that was age 12 or under, knowing that it was 2/5 of the total population, we have:

So, the population age 12 or under was 3680.
Have a nice day!
The length of the diagonal of the canvas is approximately 27 degrees.
The height of the rectangular canvas must reach 18 inches. It must form a 48 degrees angle with the diagonal at the top of the canvas.
<h3>Length of the diagonal Canvas</h3>
Therefore, the length of the diagonal can be found as follows:
Using trigonometric ratio,
- cos ∅ = adjacent / hypotenuse
where
∅ = 48°
adjacent side = Height of the rectangle = 18 inches
hypotenuse = Length of the diagonal
Therefore,
cos 48° = 18 / h
cross multiply
h = 18 / cos 48°
h = 18 / 0.66913060635
h = 26.9005778976
length of the diagonal ≈ 27 inches
learn more on rectangle here: brainly.com/question/26099609?referrer=searchResults
Answer:
ten scores in order: (Hint: These are in order)
81
81
- 82
- 84
- 85
- 86
- 89
- 93
- 94
- 95
- sum = 870
- mean = 870/10 = 87
- median 85.5 (5 above, 5 under)
- mode = 81 (there are two of them)
Hope this helped you solve the problem :)
Remember to type this correctly!
Found this on a website: jiskha.com/questions/1060894/the-test-score-for-a-math-class-are-shown-below-81-84-82-93-81-85-95-89-86-94-what-are
P.S Bad at Math.
Step-by-step explanation:
Skills needed: Addition Multiplication Division Data Sets
When you get a big set of data there are all sorts of ways to mathematically describe the data. The term "average" is used a lot with data sets. Mean, median, and mode are all types of averages. Together with range, they help describe the data. Definitions: Mean - When people say "average" they usually are talking about the mean. You can figure out the mean by adding up all the numbers in the data and then dividing by the number of numbers. For example, if you have 12 numbers, you add them up and divide by 12. This would give you the mean of the data. Median - The median is the middle number of the data set. It is exactly like it sounds. To figure out the median you put all the numbers in order (highest to lowest or lowest to highest) and then pick the middle number. If there is an odd number of data points, then you will have just one middle number. If there is an even number of data points, then you need to pick the two middle numbers, add them together, and divide by two. That number will be your median. Mode - The mode is the number that appears the most. There are a few tricks to remember about mode: If there are two numbers that appear most often (and the same number of times) then the data has two modes. This is called bimodal. If there are more than 2 then the data would be called multi-modal. If all the numbers appear the same number of times, then the data set has no modes. They all start with the letter M, so it can be hard to remember which is which sometimes. Here are some tricks to help you remember: Mean - Mean is the average. It's also the meanest because it take the most math to figure it out. Median - Median is the middle. They both have a "d" in them. Mode - Mode is the most. They both start with "mo". Range - Range is the difference between the lowest number and the highest number. Take, for example, math test scores. Let's say your best score all year was a 100 and your worst was a 75. Then the rest of the scores don't matter for range. The range is 100-75=25. The range is 25.
Answer:
(-2,4)
Step-by-step explanation:
The solution is the point at which the two lines intersect, (-2,4). That point is the only one that satisfies (works) in both equations:
y = x + 6
4 = -2 + 6
and
y = -0.5x + 3
4 = -0.5(-2) + 3
4 = 1 + 3
====
You can also solve it algebraically:
y = x + 6
y = -0.5x + 3
-0.5x + 3 = x + 6 [Use the value of y from the second equation in the first equation]
-1.5x = 3
x = -2
Use this is y = -2 + 6:
y = 4
(-2,4)