Answer:
No, it is not necessary for them to have same mass.
Explanation:
Let both bodies have a density d1 and d2 respectively.
Since their volumes are equal V1 = V2
we know that, https://tex.z-dn.net/?f=%5Cfrac%7Bmass%7D%7Bvolume%7D
Hence, d1 = and d2 =
Taking the ratio of densities,we get
This implies that unless the bodies have same densities, the mass of the two bodies will not be same.
We will determine the wavelength through the relationship given by the distance between slits, this relationship is given under the function

Here,
m = Number of order bright fringe
= Wavelength
d = Distance between slits
Both distance are the same, then



Rearranging to find the second wavelength




Therefore the wavelength of the light coming from the second monochromatic light source is 550.3nm
Answer:
0.9
Explanation:
h = 400 mm, h' = 325 mm
Let the coefficient of restitution be e.
h' = e^2 x h
325 = e^2 x 400
e^2 = 0.8125
e = 0.9
The car is accelerating at 3 m/s² in the positive direction (to the right). By Newton's second law, the net force on the car in this direction is
∑ F = F[a] - F[f] - F[air] = ma
3100 N - 200 N - F[air] = (650 kg) (3 m/s²)
Solve for F[air] :
F[air] = 3100 N - 200 N - (650 kg) (3 m/s²)
F[air] = 3100 N - 200 N - 1950 N
F[air] = 950 N
When I see the word "which" at the beginning of your question,
I just KNOW that there's a list of choices printed right there
next to he part that you copied, and for some mysterious
reason, you decided not to let us see the choices.
Any flashlight, light bulb, laser, or spark ... like lightning ...
converts some electrical energy into some light energy.