Hey there!
The answer is no because whenever you add or subtract fractions, you find the common denominator(the bottom of the fraction)
Corret way:
The common denominator is 15 (5*3)
Multiply numerator(top) and the denominator by 3
4/5*3*3= 12/15
Multiply numerator and the denominator by 5
1/3*5/5= 5/15
So the equation is now
12/15+5/15= 17/15 or 1 2/15
Hope this helps! :)
Answer:
It should I only looked at the first few columns and the matched up
Step-by-step explanation:
[ 2x + y = -9 ] x -3
[- 3x +11= y ] x 2
-6x -3y = 27
-6x + 22 = 2y
-6x +27 = 3y
-6x +22 = 2y
5 = y
-6x -3x5 = 27
-6x -15 = 27
-6x = 42
-x = 42/6
-x = 7
x = -7
answer
x = -7
y = 5
Answer:
Option (d) is correct.
![\sqrt{10000x^{64}}=100x^{32}](https://tex.z-dn.net/?f=%5Csqrt%7B10000x%5E%7B64%7D%7D%3D100x%5E%7B32%7D)
Step-by-step explanation:
Given : Expression ![\sqrt{10000x^{64}}](https://tex.z-dn.net/?f=%5Csqrt%7B10000x%5E%7B64%7D%7D)
We have to write a simplified form of the given expression ![\sqrt{10000x^{64}}](https://tex.z-dn.net/?f=%5Csqrt%7B10000x%5E%7B64%7D%7D)
Consider the given expression ![\sqrt{10000x^{64}}](https://tex.z-dn.net/?f=%5Csqrt%7B10000x%5E%7B64%7D%7D)
![\mathrm{Apply\:radical\:rule\:}\sqrt[n]{ab}=\sqrt[n]{a}\sqrt[n]{b},\:\quad \mathrm{\:assuming\:}a\ge 0,\:b\ge 0](https://tex.z-dn.net/?f=%5Cmathrm%7BApply%5C%3Aradical%5C%3Arule%5C%3A%7D%5Csqrt%5Bn%5D%7Bab%7D%3D%5Csqrt%5Bn%5D%7Ba%7D%5Csqrt%5Bn%5D%7Bb%7D%2C%5C%3A%5Cquad%20%5Cmathrm%7B%5C%3Aassuming%5C%3A%7Da%5Cge%200%2C%5C%3Ab%5Cge%200)
![=\sqrt{10000}\sqrt{x^{64}}](https://tex.z-dn.net/?f=%3D%5Csqrt%7B10000%7D%5Csqrt%7Bx%5E%7B64%7D%7D)
Factor 10000 as ![10000=100^2](https://tex.z-dn.net/?f=10000%3D100%5E2)
![\mathrm{Apply\:radical\:rule}:\quad \sqrt[n]{a^n}=a](https://tex.z-dn.net/?f=%5Cmathrm%7BApply%5C%3Aradical%5C%3Arule%7D%3A%5Cquad%20%5Csqrt%5Bn%5D%7Ba%5En%7D%3Da)
![\sqrt{100^2}=100](https://tex.z-dn.net/?f=%5Csqrt%7B100%5E2%7D%3D100)
also, ![\mathrm{Apply\:radical\:rule\:}\sqrt[n]{a^m}=a^{\frac{m}{n}},\:\quad \mathrm{\:assuming\:}a\ge 0](https://tex.z-dn.net/?f=%5Cmathrm%7BApply%5C%3Aradical%5C%3Arule%5C%3A%7D%5Csqrt%5Bn%5D%7Ba%5Em%7D%3Da%5E%7B%5Cfrac%7Bm%7D%7Bn%7D%7D%2C%5C%3A%5Cquad%20%5Cmathrm%7B%5C%3Aassuming%5C%3A%7Da%5Cge%200)
We have,
![\sqrt{x^{64}}=x^{\frac{64}{2}}=x^{32}](https://tex.z-dn.net/?f=%5Csqrt%7Bx%5E%7B64%7D%7D%3Dx%5E%7B%5Cfrac%7B64%7D%7B2%7D%7D%3Dx%5E%7B32%7D)
Thus, ![\sqrt{10000x^{64}}=100x^{32}](https://tex.z-dn.net/?f=%5Csqrt%7B10000x%5E%7B64%7D%7D%3D100x%5E%7B32%7D)
75 = 5 x 3 x 5
We can solve this using a factor tree.
75
/ \
5 15
/ \
3 5