Answer:
Bacteria do not possess the tendency to withdraw sequences of introns from a gene, thus, if the gene for the human growth hormone were transcribed, it would translate into a non-functional protein.
When the expression of a gene takes place in eukaryotes, the budding mRNA comprising introns are removed consequently at the time of post-translational processing to produce mature mRNA. Also, the human growth hormone is produced by the pituitary gland in the form of a pre-hormone comprising a leader peptide of about 20 amino acids in length, which need to get removed post-translationally to produce a mature functional protein.
Bacteria do not possess the biochemical machinery either to effectively withdraw the leader peptide after translation or to splice out the introns. Thus, when an unchanged human growth hormone is cloned, the bacteria cannot produce the functional human growth hormone.
Rolling a die multiple times to see the average.
Getting the probability for each event can easily be done using Punnett Square (say, Hh x Hh for the couple since they are both carriers of the disease). Doing so will result to: 0.25 probability of an offspring not having the disease and is not a carrier of the gene, 0.50 probability of an offspring not having the disease and is a carrier of the gene, and a 0.25 probability of an offspring having the disease. The probability of these events apply to each offspring, and will not depend on how many children they want to have. This means each offspring has a 0.25-0.50-0.25 chance of not being a carrier, being a carrier, and having the disease, respectively.
Answer:
Mars was named by the ancient Romans for their god of war because its reddish color was reminiscent of blood
Explanation:
Answer:
toooo blurryyyy post another pic but clear
Explanation: