Answer:
no I have no answer
Step-by-step explanation:
noooooooooooooo
The sum of the first 20 terms of an arithmetic sequence with the 18th term of 8.1 and a common difference of 0.25 is 124.5
Given,
18th term of an arithmetic sequence = 8.1
Common difference = d = 0.25.
<h3>What is an arithmetic sequence?</h3>
The sequence in which the difference between the consecutive term is constant.
The nth term is denoted by:
a_n = a + ( n - 1 ) d
The sum of an arithmetic sequence:
S_n = n/2 [ 2a + ( n - 1 ) d ]
Find the 18th term of the sequence.
18th term = 8.1
d = 0.25
8.1 = a + ( 18 - 1 ) 0.25
8.1 = a + 17 x 0.25
8.1 = a + 4.25
a = 8.1 - 4.25
a = 3.85
Find the sum of 20 terms.
S_20 = 20 / 2 [ 2 x 3.85 + ( 20 - 1 ) 0.25 ]
= 10 [ 7.7 + 19 x 0.25 ]
= 10 [ 7.7 + 4.75 ]
= 10 x 12.45
= 124.5
Thus the sum of the first 20 terms of an arithmetic sequence with the 18th term of 8.1 and a common difference of 0.25 is 124.5
Learn more about arithmetic sequence here:
brainly.com/question/25749583
#SPJ1
Answer:
y = (1/3)x + 7
Step-by-step explanation:
The general structure form of a line in slope-intercept form is:
y = mx + b
In this form, "m" represents the slope and "b" represents the y-intercept.
The slope of a perpendicular line is the opposite-signed, reciprocal of the original line's slope. Therefore, if the slope of the original line is m = -3, the new slope is m = 1/3.
The y-intercept can be found by plugging the new slope and the values from the point (-3, 6) into the slope-intercept form equation.
m = 1/3
x = -3
y = 6
y = mx + b <----- Slope-intercept form
6 = (-3)(1/3) + b <----- Insert values
6 = -1 + b <----- Multiply -3 and 1/3
7 = b <----- Add 1 to both sides
Now, that you have the slope and y-intercept, you can construct the equation of the perpendicular line.
y = (1/3)x + 7
Answer:
uh uh uh uh uh I'll try uh uh uh uh uh
Answer:
a) 21
Step-by-step explanation:
If the columns are labeled a, b, c, d left to right, it appears that we have ...

The value of M is 21.
_____
Questions like this require that you try different combinations of operations on the numbers shown to see if you can find a relationship. Here, the left column is a perfect square, so that is a clue. The difference of the numbers in the middle columns is a factor of the number in the right column -- another clue. It takes a certain amount of creative thought and familiarity with arithmetic facts. There is no "step-by-step" for a problem like this.