Answer:
C. 72
Step-by-step explanation:
So imagine every straight line you see equals to 180 degrees, so given one side of the angle...180 - 108 = 72
Answer:
Hi, I don't see an attachment with your question. But without any attachments to refer to. You use Pyrhagoras Theorem to solve this question.
Step-by-step explanation:
A^2 (Short side) + B^2 (Short side) = C^2 (Long side)
Stay safe and Merry Christmas! :)
<h2><u>Question</u>:-</h2>
The measurement of the three interior angles of a quadrilaterals are: 85 °, 54 ° and 96 °, what is the measurement of the fourth angle?
<h2><u>Answer</u>:-</h2>
<h3>Given:-</h3>
The measurement of the three interior angles of a quadrilaterals are: 85 °, 54 ° and 96 °
<h3>To Find:-</h3>
The measurement of the fourth angle.
<h2>Solution:-</h2>
By angle sum property of a quadrilateral,
Sum of all the interior angles = 360 °
So, let the fourth angle be x
85 ° + 54 ° + 96 ° + x = 360 °
235 ° + x = 360 °
x = 360 ° - 235 ° = 125 °
<h3>The measurement of the fourth angle is <u>1</u><u>2</u><u>5</u><u> </u><u>°</u>. [Answer]</h3>
Answer:
2x² - 3x + 6 = 0
a = 2 b = -3 c = 6
delta = b² - 4ac = 9 - 4.2.6 = -39

Answer:
131°
Step-by-step explanation:
Since KNJ is a straight line,
∡KNM +∡MNJ= 180° (adj. ∡s on a str. line)
(8x -5)° +(4x -19)°= 180°
<em>Simplify:</em>
12x -24= 180
<em>+</em><em>2</em><em>4</em><em> </em><em>on </em><em>both </em><em>sides</em><em>:</em>
12x= 180 +24
12x= 204
<em>Divide</em><em> </em><em>both </em><em>sides </em><em>by </em><em>1</em><em>2</em><em>:</em>
x= 204 ÷12
x= 17
∡KNM
= (8x -5)°
= [8(17) -5]°
= (136 -5)°
= 131°