Answer:
740
Step-by-step explanation:
The n th term of an arithmetic series is
= a₁ + (n - 1)d
where a₁ is the first term and d the common difference
Given a₃ = 7 and a₇ = (3 × 7) + 2 = 21 + 2 = 23 , then
a₁ + 2d = 7 → (1)
a₁ + 6d = 23 → (2)
Subtract (1) from (2) term by term
4d = 16 ( divide both sides by 4 )
d = 4
Substitute d = 4 into (1)
a₁ + 2(4) = 7
a₁ + 8 = 7 ( subtract 8 from both sides )
a₁ = - 1
The sum to n terms of an arithmetic series is
=
[ 2a₁ + (n - 1)d ] , thus
=
[ (2 × - 1) + (19 × 4) ]
= 10(- 2 + 76) = 10 × 74 = 740
Answer:
x = ± 13
Step-by-step explanation:
Given
x² = 169 ( take the square root of both sides )
x = ±
= ± 13
Since 13 × 13 = 169 and - 13× - 13 = 169
Given that there are 12 persons, the first choice may be in 12 different ways, the second choice may be in 11 different ways, ther third in 10 different ways, the fourth in 9 different ways and the fith in 8 different ways, for a total of:
12x11x10x9x8 different combinations.
Now you have to take in account that 5x4x3x2 are repetitions. So you have to divide the previos counting by 5x4x3x2.
(12x11x10x9x8)/(5x4x3x2) = 792 different subcommittees.
Also, you can use the formula for combinations: C(m,n) = m! / (n! (m-n)!)
C (12, 5) = 12! / (5!) (12-5)! = [12x11x10x9x8x7!] / [5! 7!] = [12x11x10x9x8]/[5x4x3x2] = 792
There is only one solution because it is a linear equation.
3x - 6 = 22 - x
3x + x = 22 + 6
4x = 28
X = 7