Use PENDAS
multiply first then add, so 13+ 84 +9 = 106
Answer:
P(A∣D) = 0.667
Step-by-step explanation:
We are given;
P(A) = 3P(B)
P(D|A) = 0.03
P(D|B) = 0.045
Now, we want to find P(A∣D) which is the posterior probability that a computer comes from factory A when given that it is defective.
Using Bayes' Rule and Law of Total Probability, we will get;
P(A∣D) = [P(A) * P(D|A)]/[(P(A) * P(D|A)) + (P(B) * P(D|B))]
Plugging in the relevant values, we have;
P(A∣D) = [3P(B) * 0.03]/[(3P(B) * 0.03) + (P(B) * 0.045)]
P(A∣D) = [P(B)/P(B)] [0.09]/[0.09 + 0.045]
P(B) will cancel out to give;
P(A∣D) = 0.09/0.135
P(A∣D) = 0.667
Answer:
Yes 20/30 is equivalent to 2/3
Step-by-step explanation:
Divide the fraction 20/30 by 10/10 to simply to 2/3
Answer:
Domain: [3, ∞)
Range: [-1, ∞)
Step-by-step explanation:
lmk if you want an explanation