Answer:
Based on compounds given, NO reaction occurs
Explanation
The compounds should exchange ions to generate a driving force that pulls the reaction to completion. => Example ...
The Molecular Equation is ...
NH₄Cl(aq) + AgNO₃(aq) => NH₄NO₃(aq) + AgCl(s)
Silver chloride forms in this reaction as a solid precipitate because of its low solubility and is the 'Driving Force' of the reaction. Driving Force is a more stable compound than any on the reactant side and when formed leaves the reaction system as a solid ppt, liquid weak electrolyte (i.e., weak acid or weak base) or a gas decomposition product of a weak electrolyte.
The Ionic Equation is ...
NH₄⁺(aq) + Cl⁻(aq) + Ag⁺(aq) + NO₃⁻(aq) => NH₄⁺(aq) + NO₃⁻(aq) + AgCl(s)
This shows all ions from reaction plus the Driving Force of the reaction.
The Net Ionic Equation is ...
Ag⁺(aq) + Cl⁻(aq) => AgCl(s)
The Net Ionic Equation shows only those ions undergoing reaction. The NH₄⁺ and NO₃⁻ ions are 'Spectator Ions' and do not react.
Attached is a reference sheet for determining the Driving Force of a Metathesis Double Replacement Reaction. Suggest reviewing acid-base theories and the products of decomposition type reactions.
Answer:
3.336.
Explanation:
<em>Herein, the no. of millimoles of the acid (HCOOH) is more than that of the base (NaOH).</em>
<em />
So, <em>concentration of excess acid = [(NV)acid - (NV)base]/V total</em> = [(30.0 mL)(0.1 M) - (29.3 mL)(0.1 M)]/(59.3 mL) = <em>1.18 x 10⁻³ M.</em>
<em></em>
<em> For weak acids; [H⁺] = √Ka.C</em> = √(1.8 x 10⁻⁴)(1.18 x 10⁻³ M) = <em>4.61 x 10⁻⁴ M.</em>
∵ pH = - log[H⁺].
<em>∴ pH = - log(4.61 x 10⁻⁴) = 3.336.</em>
Answer:
Yes it is hard. For some of us. I already gave up, but now hes coming back. Id say sometimes its useless to get his attention if he never even pays attention to you anyways. It sucks because its so hard to get then to notice you for once.
Explanation:
Answer:
Explanation:
mass % of C = 0.27/0.45*100 = 60%
mass % of H = 0.02/0.45*100 = 4.4%
mass % of O = 0.16/0.45*100 = 35.6%
Total = 60%+4.4%+ 35.6% = 100%
Answer : The correct option is, (B) 6 mole
Explanation :
Given moles of
= 6 moles
Given moles of
= 6 moles
First we have to calculate the limiting and excess reagent.
The balanced chemical reaction is,
From the given balanced reaction, we conclude that
As, 1 moles of
react with 2 moles of
So, 6 moles of
react with
moles of
From this we conclude that,
is an excess reagent and
is a limiting reagent because the given moles are less than the required moles and it limits the formation of product.
Thus, the number of moles of NaOH used up in the reaction = Required moles of NaOH - Given moles of NaOH
The number of moles of NaOH used up in the reaction = 12 - 6 = 6 moles
Therefore, the number of moles of NaOH used up in the reaction will be, 60 moles