Answer: D. They are made up of hard spheres that are in random motion.
Explanation:
A gas is a <u>state of aggregation of matter</u> in which, under certain conditions of temperature and pressure, <u>its molecules interact weakly with each other, without forming molecular bonds</u>, adopting the shape and volume of the container that contains them and tending to separate everything possible because of its <u>high concentration of kinetic energy</u>.
The molecules of a gas are practically <u>free</u> and have the ability to be distributed throughout the space in which they are contained because <u>the gravitational forces and attraction between them are practically negligible</u> compared to the speed at which they move. .
Therefore, gas molecules do not travel specific trajectories or vibrate in a stationary position, instead <u>they move quickly and randomly through the entire space of the container that contains them.</u>
Answer:
- (0.1 mol NaH₂PO₄ + 0.1 mol Na₂HPO₄)
Explanation:
A buffer solution is an aqueous solution consisting of a mixture of a weak acid and its conjugate base, or weak base and its conjugate acid.
Also, a buffer solution is a solution which resists changes in pH when acid or alkali is added to it.
- (0.1 mol NaH₂PO₄ + 0.1 mol Na₂HPO₄) when dissolved in 1 L H₂O will produce a buffer because NaH₂PO₄ is considered as weak acid while Na₂HPO₄ is its conjugate base. 2.
- (0.1 mol H₃O⁺ + 0.1 mol Cl⁻) is not a mixture of a weak acid and its conjugate base, or weak base and its conjugate acid.
- (0.1 mol HCl + 0.1 mol NaoH) HCL is a strong acid and NaOH is a strong base so it will not form a buffer when dissolved in water.
- (0.1 mol H₃O⁺ + 0.1 OH⁻) is not a mixture of a weak acid and its conjugate base, or weak base and its conjugate acid
- (0.1 mol NaCl+ 0.1 mol KCl) NaCL and KCL are salts so it will not form a buffer when dissolved in water.
So the right choice is
- (0.1 mol NaH₂PO₄ + 0.1 mol Na₂HPO₄)
Answer:
2.11 g hydrobromic acid (correct to 3SF)
Explanation:
Molecular formula of hydrobromic acid = C2H5BrO2
mass of C2H5BrO2 = 140.96g
Beginning with what we're given, 9.03*10^21 we then make a conversion by using Avegadro's number which is 6.02*10^23 per mole (Oct. 23 at 6:02 am is national mole day :) Then, we need to convert out of moles, 140.96g hydrombromic acid per mole.
It looks like this:
9.03*10^21 molecules • (1 mol C2H5BrO2 / 6.02*10^23 molecules) • (140g C2H5BrO2 / 1 mol) = 2.1144 g C2H5BrO2
Answer:
Mass = 684.2 g
Explanation:
Given data:
Moles of Aluminium = 25.36 mol
Mass of Al = ?
Solution:
Formula:
Number of moles = mass/ molar mass
Mass = number of moles × molar mass
Molar mass of Aluminium = 27 g/mol
Now we will put the values:
Mass = 25.36 mol × 26.98 g/mol
Mass = 684.2 g