1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
r-ruslan [8.4K]
3 years ago
5

2. Brian is filling a conic container with water. He has the container half full. The radius of the container is 5 inches and th

e height is 20 inches. (a) What is the current volume of the water? Show your work and explain your steps. (b) If Brian wants to transfer the water to a cylinder with a radius of 5 inches, and fill it completely, what height would the cylinder have to be? Show your work and explain your steps.
Mathematics
1 answer:
MakcuM [25]3 years ago
5 0

Answer:

current volume of the water = 785.714 in²

Height of new container = 10 inches

Step-by-step explanation:

Radius of the container = 5 inches

Height of the container = 20 inches

Volume of the container = πR²H = (22/7) × 5² × 20 = 1571.428571428 in²

Since the container is half filled with water, volume of the water = 1571.428571428 ÷ 2 = 785.714 in²

b. Volume of cylinder = πR²H = volume of water from first container = 785.714 in²

Hence 785.714 = (22/7) × 5² × H

H = (785.714) ÷ [(22/7) × 25] = 10 inches

Height of new container = 10 inches

You might be interested in
Find the measure of
FrozenT [24]

Answer:

158.4 degrees.

Step-by-step explanation:

A line is 180 degress in total so subtract 21.6 from 180. Then you get 158.4

8 0
3 years ago
Factor completely <br>5x^2-9x-2​
wariber [46]

Answer:

(5x+1)(x - 2)

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
Review: Key Concepts
inessss [21]

Answer:

Not helpful

Step-by-step explanation:

4 0
3 years ago
99 POINT QUESTION, PLUS BRAINLIEST!!!
VladimirAG [237]
First, we have to convert our function (of x) into a function of y (we revolve the curve around the y-axis). So:


y=100-x^2\\\\x^2=100-y\qquad\bold{(1)}\\\\\boxed{x=\sqrt{100-y}}\qquad\bold{(2)} \\\\\\0\leq x\leq10\\\\y=100-0^2=100\qquad\wedge\qquad y=100-10^2=100-100=0\\\\\boxed{0\leq y\leq100}

And the derivative of x:

x'=\left(\sqrt{100-y}\right)'=\Big((100-y)^\frac{1}{2}\Big)'=\dfrac{1}{2}(100-y)^{-\frac{1}{2}}\cdot(100-y)'=\\\\\\=\dfrac{1}{2\sqrt{100-y}}\cdot(-1)=\boxed{-\dfrac{1}{2\sqrt{100-y}}}\qquad\bold{(3)}

Now, we can calculate the area of the surface:

A=2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\left(-\dfrac{1}{2\sqrt{100-y}}\right)^2}\,\,dy=\\\\\\= 2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=(\star)

We could calculate this integral (not very hard, but long), or use (1), (2) and (3) to get:

(\star)=2\pi\int\limits_0^{100}1\cdot\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\left|\begin{array}{c}1=\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\end{array}\right|= \\\\\\= 2\pi\int\limits_0^{100}\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\\\\\\ 2\pi\int\limits_0^{100}-2\sqrt{100-y}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\dfrac{dy}{-2\sqrt{100-y}}=\\\\\\

=2\pi\int\limits_0^{100}-2\big(100-y\big)\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\left(-\dfrac{1}{2\sqrt{100-y}}\, dy\right)\stackrel{\bold{(1)}\bold{(2)}\bold{(3)}}{=}\\\\\\= \left|\begin{array}{c}x=\sqrt{100-y}\\\\x^2=100-y\\\\dx=-\dfrac{1}{2\sqrt{100-y}}\, \,dy\\\\a=0\implies a'=\sqrt{100-0}=10\\\\b=100\implies b'=\sqrt{100-100}=0\end{array}\right|=\\\\\\= 2\pi\int\limits_{10}^0-2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=(\text{swap limits})=\\\\\\

=2\pi\int\limits_0^{10}2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4}\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^4}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^2}{4}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{\dfrac{x^2}{4}\left(4x^2+1\right)}\,\,dx= 4\pi\int\limits_0^{10}\dfrac{x}{2}\sqrt{4x^2+1}\,\,dx=\\\\\\=\boxed{2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx}

Calculate indefinite integral:

\int x\sqrt{4x^2+1}\,dx=\int\sqrt{4x^2+1}\cdot x\,dx=\left|\begin{array}{c}t=4x^2+1\\\\dt=8x\,dx\\\\\dfrac{dt}{8}=x\,dx\end{array}\right|=\int\sqrt{t}\cdot\dfrac{dt}{8}=\\\\\\=\dfrac{1}{8}\int t^\frac{1}{2}\,dt=\dfrac{1}{8}\cdot\dfrac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1}=\dfrac{1}{8}\cdot\dfrac{t^\frac{3}{2}}{\frac{3}{2}}=\dfrac{2}{8\cdot3}\cdot t^\frac{3}{2}=\boxed{\dfrac{1}{12}\left(4x^2+1\right)^\frac{3}{2}}

And the area:

A=2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx=2\pi\cdot\dfrac{1}{12}\bigg[\left(4x^2+1\right)^\frac{3}{2}\bigg]_0^{10}=\\\\\\= \dfrac{\pi}{6}\left[\big(4\cdot10^2+1\big)^\frac{3}{2}-\big(4\cdot0^2+1\big)^\frac{3}{2}\right]=\dfrac{\pi}{6}\Big(\big401^\frac{3}{2}-1^\frac{3}{2}\Big)=\boxed{\dfrac{401^\frac{3}{2}-1}{6}\pi}

Answer D.
6 0
3 years ago
Read 2 more answers
a production manager tests 10 toothbrushes and finds that their mean lifetime is 450 hours. she then designs a sales package for
Scorpion4ik [409]
The answer was "Probability-based inference", you got apex too?
6 0
3 years ago
Read 2 more answers
Other questions:
  • Find the width of a rectangular prism when the surface area is 208 square centimeters -H=8cm,L=6cm
    8·2 answers
  • Hhhhhhhhhhhhhhhlllllllllleelpppppppppppppppp
    14·1 answer
  • Marcia has 412 flowers for centerpieces she uses 8 flowers for each center how many center pieces can she make
    10·2 answers
  • Solve the following linear inequality: -3 ≤ 2x + 5 /3 &lt; 6
    9·1 answer
  • What is the sum of the first four composte numbers? <br><br> 19 <br><br> 20 <br><br> 27 <br><br> 28​
    5·1 answer
  • Tens years equal one decade. how many years in 0.1 decade?
    6·1 answer
  • GIVING BRAINLIEST PLSSSSS BE A GOD Jennifer is saving money to buy a bike. The bike costs $294. She has $107 saved, and each wee
    10·1 answer
  • 7 pounds for $10.43; 10 pounds for a dollars
    11·1 answer
  • My teacher is asking for me to do the math of 5.05 + = 13.25, then convert to a fraction. I don't know how to do that.
    6·1 answer
  • Y is inversibly prportional to x when y=7 x=9 <br>work out the value when x=21​
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!