Answer:
Polar covalent bond.
Explanation:
When the bond is formed between the atoms by sharing the electrons the bond thus have covalent character. The atom with larger electronegativity attract the electron pair more towards it self and becomes partial negative while the other atom becomes partial positive. When the electronegativity difference is less than 0.4 the bond is non polar covalent.
When bonded atoms have greater electronegativity difference i.e 2 or greater than two the bond is ionic because electron is transfer from low electronegative atom to highest electronegative atom.
For example:
In water the electronegativity of oxygen is 3.44 and hydrogen is 2.2. That's why electron pair attracted more towards oxygen, thus oxygen becomes partial negative and hydrogen becomes partial positive.
In case of H₂, Cl₂, Br₂ the bond has very high covalent character because of zero electronegativity difference.
<span>The chemical mixture that composes our atmosphere is called Synopt.</span>
Answer:
0.0308 mol
Explanation:
In order to convert from grams of any given substance to moles, we need to use its molar mass:
- Molar mass of KAI(SO₂)₂ = MM of K + MM of Al + (MM of S + 2*MM of O)*2
- Molar mass of KAI(SO₂)₂ = 194 g/mol
Now we <u>calculate the number of moles of KAI(SO₂)₂ contained in 5.98 g</u>:
- 5.98 g ÷ 194 g/mol = 0.0308 mol
Answer: 2 moles
Explanation:
STP is Standard Temperature and Pressure. That means the pressure is 1.00 atm and the temperature is 273K. Since the oxygen is placed in the same container, we can use Ideal Gas Law to figure out what container the CO₂ used.
Ideal Gas Law: PV=nRT
P=1.00 atm
n=moles
R=0.08206 Latm/Kmol
T=273K
CO₂



Since we know that CO₂ has a 44.8 L container, we can use that to find the moles of oxygen.



There are 2 mol of oxygen.