Sorry I came a lil late,
The answer to your question is, 2.
Hope this helps! :)
Hi, you've asked an incomplete question. However, I assumed you are referring to the article found on the Scientific American website.
Explanation:
<em>Remember,</em> according to that article we are told that scientists notice that these insects have a long nymphal (immature form before becoming adults) stage, one that can last up to 13 to 17 years on the ground before they leave the ground looking for mating partners.
Because it is only after mating occurs at this point that their eggs are laid, that is why scientists believe that cicadas only reproduce every 13 or 17 years.
The number of moles in each sample will be 0.391 moles, 30.7 moles, 0.456 moles, and 1350 moles
<h3>What is the number of moles?</h3>
The number of moles of a substance is the ratio of the mass of the substance to the molar mass.
In other words; mole = mass/molar mass.
Thus:
- moles of 18.0 g
= 18.0/46
= 0.391 moles
- moles of 1.35 kg
= 1350/44
= 30.7 moles
- moles of 46.1 g
= 46.1/101.1
= 0.456 moles
- moles of 191.8 kg
= 191800/142
= 1350 moles
More on the number of moles of substances can be found here: brainly.com/question/1445383
#SPJ1
Explanation:
Sorry, I don't know, but I can tell you that when an atom, or a body, has the same amount of positive charges (protons) and negative charges (electrons), it is said to be electrically neutral. ... The net charge corresponds to the algebraic sum of all the charges that a body possesses.
<span>Consider two solutions: solution X has a pH of 4; solution Y has a pH of 7. From this information, we can reasonably conclude that </span>the concentration of hydrogen ions (H⁺) or hydronium ions (H₃O⁺) in solution X is thousand times as great as the concentration of hydrogen ions or hydronium ions in solution Y.
Solution X: c(H⁺) = 10∧-pH = 10⁻⁴ mol/L = 0,0001 mol/L.
Solution Y: c(H⁺) = 10⁻⁷ mol/L = 0,0000001 mol/L.
0,0001 mol/L / 0,0000001 mol/L = 1000.