78+24+11+56+23+117+1
=310
Answer:
[(x + 6), (y + 1)]
Step-by-step explanation:
Vertices of the quadrilateral ABCD are,
A → (-5, 2)
B → (-3, 4)
C → (-2, 4)
D → (-1, 2)
By reflecting the given quadrilateral ABCD across x-axis to form the image quadrilateral A'B'C'D',
Rule for the reflection of a point across x-axis is,
(x, y) → (x , -y)
Coordinates of the image point A' will be,
A(-5, 2) → A'(-5, -2)
From the picture attached, point E is obtained by translation of point A'.
Rule for the translation of a point by h units right and k units up,
A'(x+h, y+k) → E(x', y')
By this rule,
A'(-5 + h, -2 + k) → E(1, -1)
By comparing coordinates of A' and E,
-5 + h = 1
h = 6
-2 + k = -1
k = 1
That means
Rule for the translation will be,
[(x + 6), (y + 1)]
The alue of 5 is the tenths place.
Answer:
- 1
Step-by-step explanation:
8m + 5n
8(3) + 5(- 5)
24 + (- 25)
24 - 25
- 1
Answer:
The exact value of tan(M) is 5/12 ⇒ answer (C)
Step-by-step explanation:
* Lets revise the trigonometry functions
- In ΔABC
# m∠B = 90°
# Length of AB = a , length of BC = b and length of AC = c
# The trigonometry functions of angle C are
- sin(C) = a/c ⇒ opposite side to ∠C ÷ the hypotenuse
- cos(C) = b/c ⇒ adjacent side to ∠C ÷ the hypotenuse
- tan(c) = a/b ⇒ opposite side to ∠C ÷ adjacent side to ∠C
* Now lets solve the problem
- In ΔONM
∵ m∠N = 90°
∵ MN = 12
∵ ON = 5
∵ tan(M) = ON/NM ⇒ opposite side of ∠(M) ÷ adjacent side of ∠(M)
∴ tan(M) = 5/12
* The exact value of tan(M) is 5/12