To finish the demonstration that the quadrilateral JKLM is a rhombus we need to prove that side JK is congruent with side LM.
The length of a segment with endpoints (x1, y1) and (x2, y2) is calculated as follows:
![\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2}](https://tex.z-dn.net/?f=%5Csqrt%5B%5D%7B%28x_2-x_1%29%5E2%2B%28y_2-y_1%29%5E2%7D)
Substituting with points L(1,6) and M(4,2) we get:
![\begin{gathered} LM=\sqrt[]{(4-1)^2+(2-6)^2} \\ LM=\sqrt[]{3^2+(-4)^2} \\ LM=\sqrt[]{9+16^{}} \\ LM=5 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20LM%3D%5Csqrt%5B%5D%7B%284-1%29%5E2%2B%282-6%29%5E2%7D%20%5C%5C%20LM%3D%5Csqrt%5B%5D%7B3%5E2%2B%28-4%29%5E2%7D%20%5C%5C%20LM%3D%5Csqrt%5B%5D%7B9%2B16%5E%7B%7D%7D%20%5C%5C%20LM%3D5%20%5Cend%7Bgathered%7D)
Given that opposite sides are parallel, all sides have the same length, and, from the diagram, the quadrilateral is not a square, we conclude that it is a rhombus.
Answer:
75 motorcycles and 126 r 6 cars
Step-by-step explanation:
Answer:
Two or more independent functions (say f(x) and g(x)) can be combined to generate a new function (say g(x)) using any of the following approach.
h(x) = f(x) + g(x)h(x)=f(x)+g(x) h(x) = f(x) - g(x)h(x)=f(x)−g(x)
h(x) = \frac{f(x)}{g(x)}h(x)=
g(x)
f(x)
h(x) = f(g(x))h(x)=f(g(x))
And many more.
The approach or formula to use depends on the question.
In this case, the combined function is:
f(x) = 75+ 10xf(x)=75+10x
The savings function is given as
s(x) = 85s(x)=85
The allowance function is given as:
a(x) = 10(x - 1)a(x)=10(x−1)
The new function that combined his savings and his allowances is calculated as:
f(x) = s(x) + a(x)f(x)=s(x)+a(x)
Substitute values for s(x) and a(x)
f(x) = 85 + 10(x - 1)f(x)=85+10(x−1)
Open bracket
f(x) = 85 + 10x - 10f(x)=85+10x−10
Collect like terms
mark as brainiest
f(x) = 85 - 10+ 10xf(x)=85−10+10x
f(x) = 75+ 10xf(x)=75+10x
7/2 can be = to 3 and 1/2
1 day is = to 24 hours
3 1/2 times 24 = 84 hours