The net force on the quarterback when he is hit by two linebackers running eastwards is 255N.
Force is a vector quantity, we must recall that if two forces act in the same direction, we obtain the net force by adding the two forces together. If two forces act in opposite direction, we obtain the net force by subtracting the forces from each other.
Since the both linebackers are running East, the net force is obtained as; 105 N + 150 N = 255 N.
Learn more: brainly.com/question/4913547
It depends on what kind of solution is referred as 0.65 M. If the solution where the red blood cell is present is hypertonic, the red blood cell will shrink. If the solution is hypotonic, the red blood cell will expand. If the solution is isotonic, the red blood cell will not expand or shrink.
A. To understand the nature of an experimental subject
Answer: See attached picture.
Explanation:
DNA or deoxyribonucleic acid is the name for the molecule that contains the genetic information in all living things. This molecule consists of two strands that wind around each other to form a double helix structure.
The basic unit of nucleic acids are called nucleotides, which are organic molecules formed by the covalent bonding of a nucleoside (a pentose which is a type of sugar and a nitrogenous base) and a phosphate group. So each nucleotide is made up of a pentose sugar called deoxyribose, a nitrogenous base which can be adenine (A), thymine (T), cytosine (C) or guanine (G) and a phosphate group.
<u>What distinguishes one polynucleotide from another is the nitrogenous base</u>, and thus the sequence of DNA is specified by naming only the sequence of its bases. The sequential arrangement of these four bases along the chain is what encodes the genetic information, following the following criterion of complementarity: A-T and G-C. So the sequence of these bases along the chain is what encodes the instructions for forming proteins and RNA molecules. In living organisms, DNA occurs as a double strand of nucleotides, in which the two strands are linked together by connections called hydrogen bridges.
The chemical convention of naming the carbon atoms in the pentose nucleotide pentose numerically confers the names 5' end and 3' end ("five prime end" and "three prime end" respectively). The 5'-end designates the end of a DNA strand that coincides with the phosphate group of the fifth carbon of the respective terminal deoxyribose. A phosphate group attached to the 5'-end allows the ligation of two nucleotides; for example, the covalent bonding of the 5'-phosphate group to the 3'-hydroxyl group of another nucleotide, to form a phosphodiester bond.