Answer:
Explanation:
Resistance of the tungsten wire
R = resistivity x length / cross sectional area
= 
= 107 x 10⁻⁴ ohm
Resistance at 120 degree can be obtained from the following formula


= 155.15 x 10⁻⁴ ohm
= 160 x 10⁻⁴ ohm ( rounding off to two syg fig )
current = 12.5
potential diff = 12.5 x 155.15 x 10⁻⁴ V
= 0 .1939 V
= .19 V
required electric field = potential diff / length of wire
= .1939 / 16 x 10⁻²
= 1.2 N / C
Velocity units =m/s
Acceleration is the rate of change of velocity
a =timechange in velocity
Therefore SI units of acceleration is ms−1/s=s2m
(a) The work done by the applied force is 26.65 J.
(b) The work done by the normal force exerted by the table is 0.
(c) The work done by the force of gravity is 0.
(d) The work done by the net force on the block is 26.65 J.
<h3>
Work done by the applied force</h3>
W = Fdcosθ
W = 14 x 2.1 x cos25
W = 26.65 J
<h3>
Work done by the normal force</h3>
W = Fₙd
W = mg cosθ x d
W = (2.5 x 9.8) x cos(90) x 2.1
W = 0 J
<h3>Work done force of gravity</h3>
The work done by force of gravity is also zero, since the weight is at 90⁰ to the displacement.
<h3> Work done by the net force on the block</h3>
∑W = 0 + 26.65 J = 26.65 J
Thus, the work done by the applied force is 26.65 J.
The work done by the normal force exerted by the table is 0.
The work done by the force of gravity is 0.
The work done by the net force on the block is 26.65 J.
Learn more about work done here: brainly.com/question/8119756
#SPJ1
Answer:
a large elliptical galaxy
Explanation: