Answer:
Approximately
, assuming that the volume of these two charged objects is negligible.
Explanation:
Assume that the dimensions of these two charged objects is much smaller than the distance between them. Hence, Coulomb's Law would give a good estimate of the electrostatic force between these two objects regardless of their exact shapes.
Let
and
denote the magnitude of two point charges (where the volume of both charged object is negligible.) In this question,
and
.
Let
denote the distance between these two point charges. In this question,
.
Let
denote the Coulomb constant. In standard units,
.
By Coulomb's Law, the magnitude of electrostatic force (electric force) between these two point charges would be:
.
Substitute in the values and evaluate:
.
I would say D. because you round to the nearest whole number and 0.04 is way less than 0.5 which is a good rounding up number.
Answer:
t = 6.17 s
Explanation:
For a 1 revolution movement, 
Torque, 
Moment of Inertia, 
If the wheel starts from rest, 
The angular displacement of the wheel can be given by the formula:
................(1)
Where
is the angular acceleration

To get t, put all necessary parameters into equation (1)

Planet Geos in orbit a distance of 1 A.U. (astronomical unit) from the star Astra has an orbital period of 1 "year." If planet Logos is 4 A.U. from Astra, how long does Logos require for a complete orbit?
TB = <span>8</span> years