1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Liono4ka [1.6K]
3 years ago
12

Find the area of a playing field whichs area is 15 meters

Mathematics
1 answer:
uranmaximum [27]3 years ago
7 0
Easy just multiply 4 and 15 bc a playing field has 4 sides and u get 60
You might be interested in
Find the area of a trapezoid with b1 = 3 cm, b2 = 22 cm, and h = 6 cm.
Molodets [167]
Area of trapezoid = Average length of parallel lines x height

3+22=25
25/2= 12.5
12.5x6=75cm^2
6 0
3 years ago
Read 2 more answers
The table represents the start of the division of 15x3 + x2 - 3x + 2 by 3x + 2.
9966 [12]
The result of dividing 15x^{3}+x^{2}-3x+2 by 3x+2 is 5 x^{2} -3x+1 with no remainder. Please check the step by step procedures in the picture attached.
We can conclude that:
The quotient of the division is 5 x^{2} -3x+1
The remainder of the division is 0
The divisor is 3x+2
The dividend is 15x^{3}+x^{2}-3x+2

4 0
4 years ago
Hii pls help i’ll give brainliest if you give a correct answer
iragen [17]

Hey there ..

Ur answer .. Check it out ..

Plz mark me as brainliest ..

3 0
3 years ago
SEND HELP I JUST WANNA TAKE A NAP
aleksandr82 [10.1K]
C or a i think is one of the answer
8 0
3 years ago
Please help with this Calculus questions
Triss [41]

Answer:

\int_{0}^{1}\left( - \frac{3 u^{9}}{2} + \frac{2 u^{4}}{5} + 2 \right)du=\frac{193}{100}=1.93.

Step-by-step explanation:

To find \int_{0}^{1}\left( - \frac{3 u^{9}}{2} + \frac{2 u^{4}}{5} + 2 \right)du.

First, calculate the corresponding indefinite integral:

Integrate term by term:

\int{\left(- \frac{3 u^{9}}{2} + \frac{2 u^{4}}{5} + 2\right)d u}} =\int{2 d u} + \int{\frac{2 u^{4}}{5} d u} - \int{\frac{3 u^{9}}{2} d u}

Apply the constant rule \int c\, du = c u

\int{2 d u}} + \int{\frac{2 u^{4}}{5} d u} - \int{\frac{3 u^{9}}{2} d u} = {\left(2 u\right)} + \int{\frac{2 u^{4}}{5} d u} - \int{\frac{3 u^{9}}{2} d u}

Apply the constant multiple rule \int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du

2 u - {\int{\frac{3 u^{9}}{2} d u}} + \int{\frac{2 u^{4}}{5} d u} = 2 u - {\left(\frac{3}{2} \int{u^{9} d u}\right)} + \left(\frac{2}{5} \int{u^{4} d u}\right)

Apply the power rule \int u^{n}\, du = \frac{u^{n + 1}}{n + 1}

2 u - \frac{3}{2} {\int{u^{9} d u}} + \frac{2}{5} {\int{u^{4} d u}}=2 u - \frac{3}{2} {\frac{u^{1 + 9}}{1 + 9}}+ \frac{2}{5}{\frac{u^{1 + 4}}{1 + 4}}

Therefore,

\int{\left(- \frac{3 u^{9}}{2} + \frac{2 u^{4}}{5} + 2\right)d u} = - \frac{3 u^{10}}{20} + \frac{2 u^{5}}{25} + 2 u = \frac{u}{100} \left(- 15 u^{9} + 8 u^{4} + 200\right)

According to the Fundamental Theorem of Calculus, \int_a^b F(x) dx=f(b)-f(a), so just evaluate the integral at the endpoints, and that's the answer.

\left(\frac{u}{100} \left(- 15 u^{9} + 8 u^{4} + 200\right)\right)|_{\left(u=1\right)}=\frac{193}{100}

\left(\frac{u}{100} \left(- 15 u^{9} + 8 u^{4} + 200\right)\right)|_{\left(u=0\right)}=0

\int_{0}^{1}\left( - \frac{3 u^{9}}{2} + \frac{2 u^{4}}{5} + 2 \right)du=\left(\frac{u}{100} \left(- 15 u^{9} + 8 u^{4} + 200\right)\right)|_{\left(u=1\right)}-\left(\frac{u}{100} \left(- 15 u^{9} + 8 u^{4} + 200\right)\right)|_{\left(u=0\right)}=\frac{193}{100}

6 0
3 years ago
Other questions:
  • 0.105<br> B. 0.501<br> C. 0.015<br> D. <br> Which of the following is the least?
    13·2 answers
  • -3r + 3 (r - 2) = -2 (r + 6)
    14·2 answers
  • Round 1289.48 to the nearest dollar please
    12·2 answers
  • Find the range of the data set: 7, 12, 15, 4, 23, 15, 25, 9
    9·1 answer
  • X-1<br> 1<br> X+4<br> +<br> 2x+1<br> =<br> x-2<br> 2x²-3x-2
    11·1 answer
  • PLEASE HELP&lt;3
    5·1 answer
  • I need help with this :)
    7·1 answer
  • I need help with this work
    5·1 answer
  • Preimage Poster = 9 in by 12 in
    14·1 answer
  • A distribution of probabilities for random outcomes of a bivariate or dichotomous random variable is called a Group of answer ch
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!