Answer:
16
Step-by-step explanation:
1 1
1 2
1 3
1 4
2 1
2 2
2 3
2 4
Three and four are done exactly the same way. the total is 16 ways.
(-5, 2)(-9,9)
D = √( (x2 - x1)^2 + (y2 - y1)^2 )
D = √( (-9+5)^2 + (9 - 2)^2 )
D =√( (-4)^2 + (7)^2 )
D = √( 16 + 49 )
D = √65
D = 8
Answer: The answer is 381.85 feet.
Step-by-step explanation: Given that a window is 20 feet above the ground. From there, the angle of elevation to the top of a building across the street is 78°, and the angle of depression to the base of the same building is 15°. We are to calculate the height of the building across the street.
This situation is framed very nicely in the attached figure, where
BG = 20 feet, ∠AWB = 78°, ∠WAB = WBG = 15° and AH = height of the bulding across the street = ?
From the right-angled triangle WGB, we have

and from the right-angled triangle WAB, we have'

Therefore, AH = AB + BH = h + GB = 361.85+20 = 381.85 feet.
Thus, the height of the building across the street is 381.85 feet.
Y + 0.4 = 2 .....subtract 0.4 from both sides
y = 2 - 0.4
y = 1.6 <==