Answer:
k(4) = 10
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Algebra I</u>
Step-by-step explanation:
<u>Step 1: Define</u>
k(x) = 18 - 2x
k(4) is x = 4
<u>Step 2: Evaluate</u>
- Substitute in <em>x</em>: k(4) = 18 - 2(4)
- Multiply: k(4) = 18 - 8
- Subtract: k(4) = 10
Answer:
8, 6, 24 because 8+6+24=38
Answer:
y
=
2
x
−
1
Explanation:
First, we need to determine the slope of the line. The formula for determining the slope of a line is:
m
=
y
2
−
y
1
x
2
−
x
1
where
m
is the slope and the x and y terms are for the points:
(
x
1
,
y
1
)
and
(
x
2
,
y
2
)
For this problem the slope is:
m
=
3
−
−
1
2
−
0
m
=
3
+
1
2
m
=
4
2
m
=
2
Now, selecting one of the points we can use the point slope formula to find the equation.
The point slope formula is:
y
−
y
1
=
m
(
x
−
x
1
)
Substituting one of our points gives:
y
−
−
1
=
2
(
x
−
0
)
y
+
1
=
2
x
Solving for
y
to put this in standard form gives:
y
+
1
−
1
=
2
x
−
1
y
+
0
=
2
x
−
1
y
=
2
x
−
1
Answer linky
=
2
x
−
1
Explanation:
First, we need to determine the slope of the line. The formula for determining the slope of a line is:
m
=
y
2
−
y
1
x
2
−
x
1
where
m
is the slope and the x and y terms are for the points:
(
x
1
,
y
1
)
and
(
x
2
,
y
2
)
For this problem the slope is:
m
=
3
−
−
1
2
−
0
m
=
3
+
1
2
m
=
4
2
m
=
2
Now, selecting one of the points we can use the point slope formula to find the equation.
The point slope formula is:
y
−
y
1
=
m
(
x
−
x
1
)
Substituting one of our points gives:
y
−
−
1
=
2
(
x
−
0
)
y
+
1
=
2
x
Solving for
y
to put this in standard form gives:
y
+
1
−
1
=
2
x
−
1
y
+
0
=
2
x
−
1
y
=
2
x
−
1
Answer link
Answer:
<u>Geometry</u>
AC equals 13x + 7
<u>Algebra</u>
1. x = -16
2. x = 2
3. 2x^2 - 5x -7
4. (2x + 1)(x - 5)
Step-by-step explanation: