A buffer solution contains an equivalent amount of acid and base. The pH of the solution with an acid dissociation constant (pKa) value of 3.75 is 3.82.
<h3>What is pH?</h3>
The amount of hydrogen or the proton ion in the solution is expressed by the pH. It is given by the sum of pKa and the log of the concentration of acid and bases.
Given,
Concentration of salt [HCOO⁻] = 0.24 M
Concentration of acid [HCOOH] = 0.20 M
The acid dissociation constant (pKa) = 3.75
pH is calculated from the Hendersons equation as,
pH = pKa + log [salt] ÷ [acid]
pH = 3.75 + log [0.24] ÷ [0.20]
= 3.75 + log (1.2)
= 3.75 + 0.079
= 3.82
Therefore, 3.82 is the pH of the buffer.
Learn more about pH here:
brainly.com/question/27181245
#SPJ4
<h2>
Answer: 13985.4 g</h2>
Explanation:
Mass = volume × density
Mass = 652 cm³ × 21.45 g/cm³
= 13985.4 g
Explanation:
Answer:
B. 0.069 %
Explanation:
It should be initially noted in this answer in particular that, the amino acids tryptophan and tyrosine have a very precise 280 nm absorption rate, which allows a direct A280 size of protein concentration. The 280 nm UV absorbance rate is regularly utilized to approximate protein concentration in laboratories due to its simplistic nature, its affordability and also the ease of usage.
kindly check the attached image below for the solution to the above question.
Answer:
Explanation:1. NaNH2 (1-Butene)
CH3CH2CH2CH2Cl --------------> CH3CH2CH=CH2 + HCl (elimination reaction)
2. Br2, CCl4
CH3CH2CH=CH2 ---------------> CH3CH2CH(Br)CH2Br (Simple addition Reaction)
3. NaNH2 (1-Butyne)
CH3CH2CH(Br)CH2Br ----------------> CH3CH2C≡CH + 2HBr
Sodamide (NaNH2) is a very strong base and generally results in Terminal Alkynes when treated with Vicinal Dihalides.
Alcoholic KOH on the other hand results in the formation of Alkynes with triple bonds in the middle of the molecule.