Method:
1) Find the atomic number in a periodic table: the number of electrons equal the atomic number
2) Use Aufbau rule
Element atomic number electron configuration
<span>
P 15 1s2 2s2 2p6 3s2 3p3
Ca 20 </span><span><span>1s2 2s2 2p6 3s2 3p6 4s2
</span>Si 14</span><span> 1s2 2s2 2p6 3s2 3p2
S 16</span><span><span> 1s2 2s2 2p6 3s2 3p4
</span>Ga 31. </span><span><span> 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p</span> </span>
Answer:
KOH and H₂SO₄
Explanation:
Neutralization reaction:
It is the reaction in which acid and base react with each other and produce salt and water.
For example:
2KOH + H₂SO₄ → K₂SO₄ + 2H₂O
1. Potassium hydroxide and sulfuric acid react to produce potassium sulfate salt and water.
2. Potassium hydroxide and phosphoric acid react to produce potassium phosphate and water.
H₃PO₄ + 3KOH → K₃PO₄ + 3H₂O
3. Phosphoric acid sodium hydroxide react to produce sodium phosphate and water.
H₃PO₄ + 3NaOH → Na₃PO₄ + 3H₂O
Well i do think they're the same.
Since we know that one mole of any gas at STP is equal to 22.4 L we can multiply 135L by the following conversion: 1 mole/22.4L. When you set up the problem it looks like this…: (135L)x 1 mole/22.4L =6.03 moles of oxygen gas The liters cancel out and you are left with moles as your units.
So your answer is then 3.058
Answer:
Magnesium oxide is a simple basic oxide, because it contains oxide ions. It reacts with water to form magnesium hydroxide which is a base.