Hi, Again!
The answer to the drop downs are
•Increase
•Decreases
• 1:1
•5.9
Hope this helps !
Iodine-131 is one of the most important isotopes used in the diagnosis of thyroid cancer. One atom has a mass of <u>130.906114</u> amu.\
<h3>What is
thyroid cancer?</h3>
Cancer that originates in the tissues of the thyroid gland is known as thyroid cancer. It is a condition where cells develop improperly and are susceptible to spreading to different bodily regions. A bump in the neck or swelling are examples of symptoms. Thyroid cancer is not always diagnosed because it can move from other parts of the body to the thyroid.
Young age radiation exposure, having an enlarged thyroid, and family history are risk factors. Papillary thyroid cancer, follicular thyroid cancer, medullary thyroid cancer, and anaplastic thyroid cancer are the four primary kinds. Ultrasound and tiny needle aspiration are frequently used in diagnosis. As of right now, it is not advised to screen those who are healthy and at normal risk for the disease.
To learn more about thyroid cancer from the given link:
brainly.com/question/11880360
#SPJ4
The balanced molecular chemical equation for the reaction will be expressed as Cs₂CO₃ + Mg(NO₃)₂ -> 2CsNO₃ + MgCO₃
- For any chemical equation to be balanced, the number of moles of elements in the reactants must be equal to that of the product.
- According to the question, we are to write a balanced equation for the reaction in aqueous solution for cesium carbonate and magnesium nitrate
- The chemical formula for Cesium carbonate is Cs₂CO₃
- The chemical formula for magnesium nitrate is Mg(NO₃)₂
Hence the balanced molecular chemical equation for the reaction will be expressed as Cs₂CO₃ + Mg(NO₃)₂ -> 2CsNO₃ + MgCO₃
Learn more here: brainly.com/question/11904811
Explanation:
Beryllium is a group 2 element and its atomic number is 4. Electronic configuration of beryllium is
.
Since, a beryllium contains two valence electrons so, in order to attain stability it will readily lose its 2 valence electrons.
Therefore, a beryllium atom upon losing two valence electrons will acquire a +2 charge.
Thus, we can conclude that the net ion charge of Beryllium is +2.