Step-by-step explanation:
F( <em>x</em><em> </em><em>)</em><em> </em><em>=</em><em> </em><em>5</em><em> </em><em>(</em><em>3</em><em>)</em><em> </em><em>^</em><em> </em><em>x</em>
<em>Y</em><em> </em><em>intercept</em><em> </em>
<em>Let</em><em> </em><em>x</em><em> </em><em>=</em><em> </em><em>0</em>
<em>f</em><em>(</em><em>0</em><em>)</em><em> </em><em>=</em><em> </em><em>5</em><em>×</em><em> </em><em>3</em><em> </em><em>^</em><em> </em><em>0</em>
<em>f</em><em>(</em><em>0</em><em> </em><em>=</em><em> </em><em>5</em><em> </em><em>×</em><em> </em><em>1</em>
<em>f</em><em>(</em><em>0</em><em>)</em><em> </em><em>=</em><em> </em><em>5</em>
<em>X</em><em> </em><em>intercept</em><em> </em>
<em>let</em><em> </em><em>y</em><em> </em><em>=</em><em> </em><em>o</em>
<em>0</em><em> </em><em>=</em><em> </em><em>5</em><em> </em><em>×</em><em> </em><em>3</em><em> </em><em>^</em><em>x</em>
<em>No</em><em> </em><em>x</em><em> </em><em>intercept</em><em>/</em><em> </em><em>zero</em>
<em>therefore</em><em> </em>
<em>Vertical</em><em> </em><em>intercept</em><em> </em><em>(</em><em>0</em><em>;</em><em> </em><em>5</em><em>)</em>
<em>Domain</em><em> </em><em>XER</em>
<em>▪︎</em><em>this</em><em> </em><em>refer</em><em> </em><em>to</em><em> </em><em>the</em><em> </em><em>values</em><em> </em><em>of</em><em> </em><em>X</em>
Answer:
Step-by-step explanation:
To find median and mode for
a) In a uniform distribution median would be
(a+b)/2 and mode = any value
b) X is N
we know that in a normal bell shaped curve, mean = median = mode
Hence mode = median = 
c) Exponential with parameter lambda
Median = 
Mode =0
The expression C.
cubic
represents the bacterium's volume.
Step-by-step explanation:
Step 1:
The E. Coli bacterium is in the shape of a cylinder.
The volume of a cylinder is given by multiplying π with the square of the radius (r²) and the height of the cylinder.
The volume of a cylinder, 
In the given diagram, E. Coli has a radius of 1
and a height of 0.5
.
Step 2:
By substituting the values in the equation, we get
The volume of the E. Coli bacterium
cubic
.
This is option C.