Answer:

Step-by-step explanation:
Answer:
![\left[\begin{array}{ccc}7\\4\\2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D7%5C%5C4%5C%5C2%5Cend%7Barray%7D%5Cright%5D)
The answer is a single-column matrix (7,4,2)
Step-by-step explanation:
In such multiplication of matrices, you have to proceed by multiplying each ROW of the first matrix by the COLUMN of the second matrix. So,
![\left[\begin{array}{ccc}3&6&1\end{array}\right] * \left[\begin{array}{ccc}2\\0\\1\end{array}\right] = (3 * 2) + (6 * 0) + (1 * 1) = 6 + 0 + 1 = 7](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%266%261%5Cend%7Barray%7D%5Cright%5D%20%2A%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%5C%5C0%5C%5C1%5Cend%7Barray%7D%5Cright%5D%20%3D%20%283%20%2A%202%29%20%2B%20%286%20%2A%200%29%20%2B%20%281%20%2A%201%29%20%3D%206%20%2B%200%20%2B%201%20%3D%207)
then...
![\left[\begin{array}{ccc}2&4&0\end{array}\right] * \left[\begin{array}{ccc}2\\0\\1\end{array}\right] = (2 * 2) + (4 * 0) + (0 * 1) = 4 + 0 + 0 = 4](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%264%260%5Cend%7Barray%7D%5Cright%5D%20%2A%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%5C%5C0%5C%5C1%5Cend%7Barray%7D%5Cright%5D%20%3D%20%282%20%2A%202%29%20%2B%20%284%20%2A%200%29%20%2B%20%280%20%2A%201%29%20%3D%204%20%2B%200%20%2B%200%20%3D%204)
and
![\left[\begin{array}{ccc}0&6&2\end{array}\right] * \left[\begin{array}{ccc}2\\0\\1\end{array}\right] = (0 * 2) + (6 * 0) + (2 * 1) = 0 + 0 + 2= 2](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%266%262%5Cend%7Barray%7D%5Cright%5D%20%2A%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%5C%5C0%5C%5C1%5Cend%7Barray%7D%5Cright%5D%20%3D%20%280%20%2A%202%29%20%2B%20%286%20%2A%200%29%20%2B%20%282%20%2A%201%29%20%3D%200%20%2B%200%20%2B%202%3D%202)
I hope it helps.
Answer:
The new coordinates would be (-4, 11)
(-10, 11) (-9, 7) Hope this helps!
F(x) = 2x^2 + 5x
f(3b) = 2(3b)^2 + 5(3b) = 2(9b^2) + 15b = 18b^2 + 15b
Answer:
Option 1: CD is a perpendicular bisector of AB
Step-by-step explanation:
Let us find out the slopes of various line segments and the Distances and then we will draw the conclusions accordingly.
Formula to find slope

Formula to Find Distance between two points

mAB ( represents , Slope of AB )
1. 
2. 
3. 
4. 
5. 
mAC = mBC , and C is common point , hence these three are collinear points making a straight line whole slope is 



Hence CD ⊥ AB
Also
From Point 4 and point 5 above , we see that
AC = CB
Hence CD bisect AB at C, also CD ⊥ AB
There fore
CD is a perpendicular bisector of AB
Therefor option 1 is true