The wavelength of a photon that has an energy of E = 3.69×10−19 J is 5.42 x 10⁻⁷ m.
<h3>What do you mean by wavelength?</h3>
The space between corresponding points (adjacent crests) in adjacent cycles is known as the wavelength () of a waveform signal that is sent in space or down a wire.
The wavelength can be calculated by the given formula
E = hc/λ
Where, E is energy = 3.65 x 10⁻¹⁹ J
h is plank's constant = 6.626 x 10⁻³⁴ J.sec
c is speed of light = 2.9 × 10⁸ m/s
Putting the values in the formula
λ = (6.626 x 10⁻³⁴)(2.9 × 10⁸) / (3.65 x 10⁻¹⁹) = 5.42 x 10⁻⁷ m.
Thus, the wavelength, λ is 5.42 x 10⁻⁷ m.
Learn more about wavelength
brainly.com/question/13533093
#SPJ1
this is the answer of your question .
<em>Hope</em><em> </em><em>it</em><em> </em><em>helped </em><em>you</em>
Answer:
"
" is the right answer.
Explanation:
Given:
Partial pressure of
,
= 0.20 atm
Partial pressure of
,
= 0.15 atm
at 
As we know,
⇒ 
By putting the values, we get



Answer: dilute
Explanation:
A concentrated solution which is used to prepare solutions of lower concentrations by diluting it with addition of water.
A dilute solution is one which contains lower concentration.
Using Molarity equation:
=concentration of stock solution = 0.150 mol/L
= volume of stock solution = 10.0 ml
= concentration of dilute solution = ?
= volume of dilute solution = (10.0+90.0) ml = 100.0 ml


As the concentration is less than the original concentration, the solution is termed as dilute.
Answer:
The final and initial concentration of the acid and it's conjugate base are approximately equal, that is we use the weak acid approximation.
Explanation:
The Henderson-Hasselbalch is used to calculate the pH of a buffer solution. It depends on the weak acid approximation.
Since the weak acid ionizes only to a small extent, then we can say that [HA] ≈ [HA]i
Where [HA] = final concentration of the acid and [HA]i = initial concentration of the acid.
It also follows that [A^-] ≈ [A^-]i where [A^-] and[A^-]i refer to final and initial concentrations of the conjugate base hence the answer above.