Explanation:
If the concentration of a substance is changed, the equilibrium will shift to minimise the effect of that change. If the concentration of a reactant is increased the equilibrium will shift in the direction of the reaction that uses the reactants, so that the reactant concentration decreases. For example, decreased volume and therefore increased concentration of both reactants and products for the following reaction at equilibrium will shift the system toward more products.
Answer:
B. Decreasing the pressure applied to the gas molecules
Explanation:
According to Boyle's Law, the pressure of the gas is inversely proportional to the volume of the gas. So, the option B is correctly implied to it.
Other values such as Temperature, Number of molecules are inversely proportional to the volume of the gas.
Size of the gas molecules is negligible as compared to volume.
Answer:
If the temperature increases the molecular movement as well, and if it increases the same it will happen with the molecular movement.
Pressure, volume and temperature are three factors that are closely related since they increase the temperature, the pressure usually decreases due to the dispersion of the molecules that can be generated, so the volume also increases.
If the temperature drops, the material becomes denser, its molecules do not collide with each other, their volume and pressure increases.
Explanation:
The pressure is related to the molecular density and the movement that these molecules have.
The movement is regulated by temperature, since if it increases, the friction and collision of the molecules also.
On the other hand, the higher the volume, the less pressure there will be on the molecules, since they are more dispersed among themselves.
(in the opposite case that the volume decreases, the pressure increases)
Gravity depends on distance and the moon is closer to earth
Answer:
group 1, 2 and 3 tend to get rid of electrons and start to form compounds with groups 7, 6, and 5.
Explanation: