----------------------------------------------------------------
Method 1
----------------------------------------------------------------
Since the numerators are the same, the smaller the denominators, the greater the fraction is.
Arranging from the least to the greatest

----------------------------------------------------------------
Method 2
----------------------------------------------------------------
Lets change all to the same denominators



Now that all the denominators are the same, we can arrange the fractions by comparing the numerators. The bigger the numerators, the greater the fraction.
Arranging from the least to the greatest
Answer:
=
1
1
2
Step-by-step explanation:
.
3xy-5x+9y-45
Step-by-step explanation:
Step by Step Solution
STEP1:STEP2:Pulling out like terms
2.1 Pull out like factors :
3y - 15 = 3 • (y - 5)
Equation at the end of step2: (x • (3y - 5)) + 9 • (y - 5) STEP3:Equation at the end of step 3 x • (3y - 5) + 9 • (y - 5) STEP4:Trying to factor a multi variable polynomial
4.1 Split 3xy-5x+9y-45
4.1 Split 3xy-5x+9y-45
into two 2-term polynomials
-5x+3xy and +9y-45
This partition did not result in a factorization. We'll try another one:
3xy-5x and +9y-45
This partition did not result in a factorization. We'll try another one:
3xy+9y and -5x-45
This partition did not result in a factorization. We'll try another one:
3xy-45 and +9y-5x
This partition did not result in a factorization. We'll try another one:
-45+3xy and +9y-5x
This partition did not result in a factorization. We'll try
Answer:
Step-by-step explanation:
Given the expression (x+11)(2x+3)
We want to expand it and write equivalent expression
Generally if we want to expand an expression we will take one of the expression in one bracket and multiply with the other bracket and then take the other expression and multiply it with the other
E.g, (a+b) × (c + d)
Then, we take a × (c+d) and also b × (c+d)
We can do it the other way round too and it will give the same results.
So, applying this to the given expression
(x+11)(2x+3)
x(2x+3) + 11(2x+3)
2x² + 3x + 22x + 33
2x² + 25x + 33
Then, the equivalent expression is 2x² + 25x + 33
(x + 11)(2x + 3) = 2x² + 25x + 33