<u>Answer</u>: option B they have a random gene mutation that affects their fur colour.
<u>Explanation</u> :-
- <em>Variation</em> is the phenomena which occurs in all populations.
- These variations result in slight differences in the phenotypes of individuals .
- These variations only arise due to <em>random mutations </em>that arise in the individuals’ genome and then can be inherited by their offspring.
- There is always a probability of one particular trait to make the individuals survive better in the environment as compared to other trait.
- The individuals having the trait that helps them to survive better in the environment tend to survive more and leave more progeny. This is termed as <em>survival of the fittest</em>.
- Thus, according to the question it can be inferred that the dark fur colour arose due to a <em>random mutation </em>since it is the only source of variation. Since, in the given environmental conditions the mice having the dark fur colour were less susceptible to the predators they are better fitted to survive.
- The dark brown fur coat mice, survive better, leave more progeny and hence, increase their population with time. However, the orginal source of origin of this trait was a random mutation. Had this mutation not occured, the dark coloured fur mice would not have been there.
So, a <em>random gene mutation affecting the fur colour made the dark coloured mice first appear in the population.</em>
During Meiosis, Cell divides "Twice" (2 times )
Hope this helps!
Answer: One H⁺ ion ie required in converting ATP and inorganic phosphate to ATP
Explanation:During oxidative phosphorylation, high energy electrons released by hydrogen carriers are shuttled through the electron transport chain. The released energy is used to translocate 3 H+ ions from the matrix, creating an proton motive force, which will cause 1 H+ ion to move down the electrochemical gradient and diffuse back into the matrix (chemiosmosis) which is facilitated by ATP synthase. As the H+ moves through the ATP synthase this triggers the molecular rotation of the enzyme, synthesizing ATP