Answer:
1120 combinations of four teachers include exactly one of either Mrs. Vera or Mr. Jan.
Step-by-step explanation:
The order in which the teachers are chosen is not important, which means that the combinations formula is used to solve this question.
Combinations formula:
is the number of different combinations of x objects from a set of n elements, given by the following formula.
In this question:
1 from a set of 2(Either Mrs. Vera or Mr. Jan).
3 from a set of 18 - 2 = 16. So

1120 combinations of four teachers include exactly one of either Mrs. Vera or Mr. Jan.
The number of handshakes that will occur in a group of eighteen people if each person shakes hands once with each other person in the group is 153 handshakes
In order to determine the number of handshakes that will occur among 18 people, that is, the number of ways we can choose 2 persons from 18 people.
∴ The number of handshakes = 






∴ The number of handshakes = 153 handshakes
Hence. 153 handshakes will occur in a group of eighteen people if each person shakes hands once with each other person in the group.
Learn more here: brainly.com/question/1991469
Answer:
103&(#!92($+#”39214849)?lm
Answer: a = -15
Step-by-step explanation:
3a + b = 9
b=54
3a + 54 = 9
3a = 9-54
3a= -45
<h3>

</h3>
- x + = -
<h2>a= -15</h2>