Answer:
6CO2 + 6H2O --> C6H12O6 + 6O2
C6H12O6 + O2 --> 6CO2 + 6H2O
Explanation:
The balanced form of both equations
There's no diagram attached, but diffusion of heat within the water (which i think is what the question's asking) would be due to convection currents.
IT forms because they are highly reactive elements.
Answer:
The energy required to heat 1.30 kg of water from 22.4°C to 34.2°C is 64,121.2 J
Explanation:
Calorimetry is the measurement of the amount of heat that a body gives up or absorbs in the course of a physical or chemical process.
The sensible heat of a body is the amount of heat received or transferred by a body when undergoing a temperature variation (Δt) without there being a change in physical state. That is, when a system absorbs (or gives up) a certain amount of heat, it may happen that it experiences a change in its temperature, involving sensible heat. Then, the equation for calculating heat exchanges is:
Q = c * m * ΔT
Where Q is the heat or quantity of energy exchanged by a body of mass m, constituted by a substance of specific heat c and where ΔT is the variation in temperature (ΔT=Tfinal - Tinitial).
In this case:
- m= 1.30 kg= 1,300 g (1 kg=1,000 g)
- ΔT= 34.2 °C - 22.4 °C= 11.8 °C= 11.8 °K Being a temperature difference, it is independent if they are degrees Celsius or degrees Kelvin. That is, the temperature difference is the same in degrees Celsius or degrees Kelvin.
Replacing:

Q= 64,121.2 J
<u><em>The energy required to heat 1.30 kg of water from 22.4°C to 34.2°C is 64,121.2 J</em></u>
80 minutes because:
1600 -> 20mins -> 800
800 -> 20 mins -> 400
400 -> 20 mins -> 200
200 -> 20 mins -> 100
4*20 mins = 80 minutes