<h3>Take the weighted average of the individual isotopes.</h3><h3 /><h3>Explanation:</h3><h3>63</h3><h3>C</h3><h3>u</h3><h3> has </h3><h3>69.2</h3><h3>%</h3><h3> abundance.</h3><h3 /><h3>65</h3><h3>C</h3><h3>u</h3><h3> has </h3><h3>30.8</h3><h3>%</h3><h3> abundance.</h3><h3 /><h3>So, the weighted average is </h3><h3>62.93</h3><h3>×</h3><h3>69.2</h3><h3>%</h3><h3> </h3><h3>+</h3><h3> </h3><h3>64.93</h3><h3>×</h3><h3>30.8</h3><h3>%</h3><h3> </h3><h3>=</h3><h3> </h3><h3>63.55</h3><h3> </h3><h3>amu</h3><h3> .</h3><h3 /><h3>If we look at the Periodic Table, copper metal (a mixture of isotopes but </h3><h3>63</h3><h3>C</h3><h3>u</h3><h3> and </h3><h3>65</h3><h3>C</h3><h3>u</h3><h3> predominate) has an approximate atomic mass of </h3><h3>63.55</h3><h3> </h3><h3>g</h3><h3>⋅</h3><h3>m</h3><h3>o</h3><h3>l</h3><h3>−</h3><h3>1</h3><h3> , so we know we are right.</h3>
Beyond the planet Neptune is found a region filled with icy bodies. This region is known as the Kuiper Belt. This holds trillions of objects which is said to be remnants of the early solar system. The region contains comets and dwarf planets.
Your answer is d hope I helped
Initial pressure of the gas = 65.3 kPa
Initial volume of the gas = 654 cm³
Initial temperature of the gas = 6⁰C = 273 + 6 = 279 K
Final pressure of the gas = 108.7 kPa
Final temperature of the gas = 4⁰C = 273 + 4 = 277 K
Using the combined gas law for ideal gases:
P₁V₁/T₁ = P₂V₂/T₂
where P₁, V₁ and T₁ are the pressure, volume and temperature for the initial state and P₂, V₂ and T₂ are the pressure, volume and temperature for the final state.
Plugging the given data into the combined gas law we have,
(65.3 kPa x 654 cm³) / (279 K) = (108.7 kPa x V₂)/(277 K)
V₂ = (65.3 kPa x 654 cm³ x 277 K) / (279 K x 108.7 kPa)
V₂ = 390.1 cm³