Destructive interference in which waves cancel each other out is depicted in region X,Y and Z.
<u>Explanation:</u>
Interface is the particle property of light waves. When incident light beam is made to pass through holes, the waves will combine either constructively or destructively. Constructive interference means the waves having same phase will get added so they will increase in amplitude. While destructive interference means the waves combining have different phases like crests and troughs. So they undergo decrease or complete vanishing of amplitude.
When waves combine in constructive interference, they form bright white light and when they combine in destructive interference, they form dark black light. So the regions X, Y and Z are shown as dark black colors in the diagram, so these regions represent destructive interference in which waves cancel each other out.
Ba(OH)2 dissociates according to the equation below to yield Barium ions and hydroxide ions.
Ba(OH)2 = Ba²⁺ + 2 OH⁻
The concentration of Ba²⁺ is 1.0 ×10^-3 M
Thus that of OH⁻ ions will be 2× 1.0 ×10^-3 = 2.0 × 10^-3 M
Thus; the answer is 2.0 × 10^-3 M
Concentration :
196 g/L and 4 N
<h3> </h3><h3>Further explanation</h3>
The concentration of a substance can be expressed in several quantities such as moles, percent (%) weight / volume,), molarity, molality, parts per million (ppm) or mole fraction. The concentration shows the amount of solute in a unit of the amount of solvent.
500 cc of 2M H₂SO₄
V = 500 cc = 0.5 L
mol H₂SO₄

mass H₂SO₄ (MW = 98 g/mol)

concentration in g/L :

concentration in normality
Relationship between normality and molarity
N = M x n (n=valence , amount of H⁺ or OH⁻)
so :

Answer:
A
Explanation:
Carbon dioxide in the air
Answer:
sublimation
Explanation:
solid => liquid Melting
liquid => solid freezing
liquid => gas evaporation
gas => liquid condensation
solid => gas sublimation
gas => solid deposition (e.g.; formation of frost), however some scholars will also refer to this process as sublimation.