Subtract 10 evertime cuz that s taxes
Answer: 1. ∠A= 80.75° 2. 41.79 
Step-by-step explanation:
Since, According to the sines low,

Here, CB= 4.1 cm, AB = 3.3 and ∠ C = 52.6°

⇒ 
⇒ 
⇒ A = 80.75°
2. Since, the area of the given figure = Area of the rectangle having dimension 8.3 × 4.2 + Area of the half square of radius 2.1
=34.86 + 6.93
= 41.79 square cm
A viable argument showing how it is reflected by the Cost Function for Wichita’s factory is; The cost of production per unit of item produced is 1$ as long as total units produced is less than 2500. If more than 2500 units are produced than the cost per unit actually comes down to 0.8$per unit.
<h3>How to Interpret Cost Functions?</h3>
From the given options, the best statement is;
The plant’s production processes are performed primarily by robots that are able to work longer hours, when needed, at no additional cost.
A cost function is a formula used to predict the cost that will be experienced at a certain activity level. Thus, the cost function for the best option is;
The cost of production per unit of item produced is 1$ as long as total units produced is less than 2500. If more than 2500 units are produced than the cost per unit actually comes down to 0.8$per unit.
The missing options are;
___ The electricity contract with the utility company is structured so that higher daily energy usage is charged at a lower rate.
___ The plant’s production processes are performed primarily by robots that are able to work longer hours, when needed, at no additional cost.
___ Overtime wages were required to produce at levels above 25,000 units.
Read more about Cost Functions at; brainly.com/question/14038368
#SPJ1
let's firstly change the 1.2 to a fraction
![1.\underline{2}\implies \cfrac{12}{1\underline{0}}\implies \cfrac{6}{5} \\\\[-0.35em] ~\dotfill\\\\ (\stackrel{x_1}{10}~,~\stackrel{y_1}{6})\qquad (\stackrel{x_2}{4}~,~\stackrel{y_2}{\frac{6}{5}}) \\\\\\ \stackrel{slope}{m}\implies \cfrac{\stackrel{rise} {\stackrel{y_2}{\frac{6}{5}}-\stackrel{y1}{6}}}{\underset{run} {\underset{x_2}{4}-\underset{x_1}{10}}}\implies \cfrac{~~ \frac{6-30}{5}~~}{-6}\implies \cfrac{~~ \frac{-24}{5}~~}{-6}\implies \cfrac{~~ -\frac{24}{5}~~}{-\frac{6}{1}}](https://tex.z-dn.net/?f=1.%5Cunderline%7B2%7D%5Cimplies%20%5Ccfrac%7B12%7D%7B1%5Cunderline%7B0%7D%7D%5Cimplies%20%5Ccfrac%7B6%7D%7B5%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%28%5Cstackrel%7Bx_1%7D%7B10%7D~%2C~%5Cstackrel%7By_1%7D%7B6%7D%29%5Cqquad%20%28%5Cstackrel%7Bx_2%7D%7B4%7D~%2C~%5Cstackrel%7By_2%7D%7B%5Cfrac%7B6%7D%7B5%7D%7D%29%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7Bslope%7D%7Bm%7D%5Cimplies%20%5Ccfrac%7B%5Cstackrel%7Brise%7D%20%7B%5Cstackrel%7By_2%7D%7B%5Cfrac%7B6%7D%7B5%7D%7D-%5Cstackrel%7By1%7D%7B6%7D%7D%7D%7B%5Cunderset%7Brun%7D%20%7B%5Cunderset%7Bx_2%7D%7B4%7D-%5Cunderset%7Bx_1%7D%7B10%7D%7D%7D%5Cimplies%20%5Ccfrac%7B~~%20%5Cfrac%7B6-30%7D%7B5%7D~~%7D%7B-6%7D%5Cimplies%20%5Ccfrac%7B~~%20%5Cfrac%7B-24%7D%7B5%7D~~%7D%7B-6%7D%5Cimplies%20%5Ccfrac%7B~~%20-%5Cfrac%7B24%7D%7B5%7D~~%7D%7B-%5Cfrac%7B6%7D%7B1%7D%7D)
![-\cfrac{\stackrel{4}{~~\begin{matrix} 24 \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~}}{5}\cdot -\cfrac{1}{\underset{1}{~~\begin{matrix} 6 \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~}}\implies \boxed{\cfrac{4}{5}}](https://tex.z-dn.net/?f=-%5Ccfrac%7B%5Cstackrel%7B4%7D%7B~~%5Cbegin%7Bmatrix%7D%2024%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%7D%7D%7B5%7D%5Ccdot%20-%5Ccfrac%7B1%7D%7B%5Cunderset%7B1%7D%7B~~%5Cbegin%7Bmatrix%7D%206%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%7D%7D%5Cimplies%20%5Cboxed%7B%5Ccfrac%7B4%7D%7B5%7D%7D)