1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Makovka662 [10]
3 years ago
11

A truck driver is driving his truck at a constant rate of 50 miles per hour on a road that is 425 miles long. How long will he t

ake to cover this distance?
Mathematics
2 answers:
777dan777 [17]3 years ago
5 0
Just do 425 ÷ 50 which equals 8.5 (hours)
Furkat [3]3 years ago
4 0

Answer:

D)8.5hr

Step-by-step explanation:

just took the quiz

You might be interested in
The product of 2 and the second power of y
Morgarella [4.7K]
The answer is y2*2 

hope this helps
5 0
3 years ago
Which of the tables represents a function?
True [87]
Table B. The same input can't go to different outputs
8 0
3 years ago
Is anyone able to help please
Naddika [18.5K]

Answer: - 8?? sorry if im wrong

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
The length l, width w, and height h of a box change with time. At a certain instant the dimensions are l = 3 m and w = h = 6 m,
Gemiola [76]

Answer:

a) The rate of change associated with the volume of the box is 54 cubic meters per second, b) The rate of change associated with the surface area of the box is 18 square meters per second, c) The rate of change of the length of the diagonal is -1 meters per second.

Step-by-step explanation:

a) Given that box is a parallelepiped, the volume of the parallelepiped, measured in cubic meters, is represented by this formula:

V = w \cdot h \cdot l

Where:

w - Width, measured in meters.

h - Height, measured in meters.

l - Length, measured in meters.

The rate of change in the volume of the box, measured in cubic meters per second, is deducted by deriving the volume function in terms of time:

\dot V = h\cdot l \cdot \dot w + w\cdot l \cdot \dot h + w\cdot h \cdot \dot l

Where \dot w, \dot h and \dot l are the rates of change related to the width, height and length, measured in meters per second.

Given that w = 6\,m, h = 6\,m, l = 3\,m, \dot w =3\,\frac{m}{s}, \dot h = -6\,\frac{m}{s} and \dot l = 3\,\frac{m}{s}, the rate of change in the volume of the box is:

\dot V = (6\,m)\cdot (3\,m)\cdot \left(3\,\frac{m}{s} \right)+(6\,m)\cdot (3\,m)\cdot \left(-6\,\frac{m}{s} \right)+(6\,m)\cdot (6\,m)\cdot \left(3\,\frac{m}{s}\right)

\dot V = 54\,\frac{m^{3}}{s}

The rate of change associated with the volume of the box is 54 cubic meters per second.

b) The surface area of the parallelepiped, measured in square meters, is represented by this model:

A_{s} = 2\cdot (w\cdot l + l\cdot h + w\cdot h)

The rate of change in the surface area of the box, measured in square meters per second, is deducted by deriving the surface area function in terms of time:

\dot A_{s} = 2\cdot (l+h)\cdot \dot w + 2\cdot (w+h)\cdot \dot l + 2\cdot (w+l)\cdot \dot h

Given that w = 6\,m, h = 6\,m, l = 3\,m, \dot w =3\,\frac{m}{s}, \dot h = -6\,\frac{m}{s} and \dot l = 3\,\frac{m}{s}, the rate of change in the surface area of the box is:

\dot A_{s} = 2\cdot (6\,m + 3\,m)\cdot \left(3\,\frac{m}{s} \right) + 2\cdot (6\,m+6\,m)\cdot \left(3\,\frac{m}{s} \right) + 2\cdot (6\,m + 3\,m)\cdot \left(-6\,\frac{m}{s} \right)

\dot A_{s} = 18\,\frac{m^{2}}{s}

The rate of change associated with the surface area of the box is 18 square meters per second.

c) The length of the diagonal, measured in meters, is represented by the following Pythagorean identity:

r^{2} = w^{2}+h^{2}+l^{2}

The rate of change in the surface area of the box, measured in square meters per second, is deducted by deriving the surface area function in terms of time before simplification:

2\cdot r \cdot \dot r = 2\cdot w \cdot \dot w + 2\cdot h \cdot \dot h + 2\cdot l \cdot \dot l

r\cdot \dot r = w\cdot \dot w + h\cdot \dot h + l\cdot \dot l

\dot r = \frac{w\cdot \dot w + h \cdot \dot h + l \cdot \dot l}{\sqrt{w^{2}+h^{2}+l^{2}}}

Given that w = 6\,m, h = 6\,m, l = 3\,m, \dot w =3\,\frac{m}{s}, \dot h = -6\,\frac{m}{s} and \dot l = 3\,\frac{m}{s}, the rate of change in the length of the diagonal of the box is:

\dot r = \frac{(6\,m)\cdot \left(3\,\frac{m}{s} \right)+(6\,m)\cdot \left(-6\,\frac{m}{s} \right)+(3\,m)\cdot \left(3\,\frac{m}{s} \right)}{\sqrt{(6\,m)^{2}+(6\,m)^{2}+(3\,m)^{2}}}

\dot r = -1\,\frac{m}{s}

The rate of change of the length of the diagonal is -1 meters per second.

6 0
3 years ago
Simplify completely 3x+18/18 ...?
tankabanditka [31]
X = -1/3 should be it
6 0
3 years ago
Read 2 more answers
Other questions:
  • A right circular cylinder has a volume of 500 cu in. If the base has a radius of 4 in., what's the altitude of the cylinder? Rou
    9·1 answer
  • Help me please 2 minutes for class to start
    7·1 answer
  • Please help..............​
    15·1 answer
  • R+b=7 <br> 3.75r+2.75b=22.25
    12·1 answer
  • If a pizza pie had<br> a diameter of 12<br> inches, what<br> would be its<br> circumference?
    11·2 answers
  • Suppose you invest a certain amount of money in account that earns 3% annual interest. You also invest that same amount + $2000
    9·1 answer
  • The difference between two positive numbers is 7 and the difference between thes
    7·2 answers
  • Plz helppppppppppp:)))))
    7·1 answer
  • HEY GUYS CAN SOMEONE PLEASE HELP I NEED TO PASS THIS!!<br> THANKS SO MUCH FOR THE HELP!
    8·1 answer
  • Simplify: 6√2•5v14. ​
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!