1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Shtirlitz [24]
3 years ago
14

The vertices of a triangle are P(−3, −4), Q(3, 4), and R(−6, −3). Name the vertices of Rx = 0 (PQR).

Mathematics
1 answer:
Katyanochek1 [597]3 years ago
6 0
The correct answer is <span>A) P'(3, −4), Q'(−3, 4), R'(6, −3)</span>

Rx = 0 indicates a reflection over the y-axis. 

The rule for such a transformation is:
(x, y) --> (-x, y)
which means that the x-coordinate changes sign and the y-coordinate stays the same.

Therefore:
P<span>(-3, -4) --> P'(3, -4)
Q(3, 4) --> Q'(-3, 4)
R(-6, -3)</span> --> R'(6, -3)

These points are those in option A).
You might be interested in
a student claims that 8 to the third power times 8 to the -5 power is greater than 1 explain whether the student is correct or n
nika2105 [10]
I think he is not correct because there is negative number so it can't be greater than one
7 0
3 years ago
Micah made a scale model of the Empire State building.The building has an actual height of 381 meters. Micah’s model used a scal
Marysya12 [62]

<em>Answer:</em>

<em>1cm = 50 </em>

<em>2 cm = 50 x 2 </em>

<em>3cm = 50 x 3 </em>

<em>and the inverse:50m = 50/50 = 1cm </em>

<em>100m = 100/50 = 2cm </em>

<em>150m = 150/50 = 3cm </em>

<em>381m = 381/ </em>

3 0
3 years ago
At work, Elon takes a break 1/5​​ of each hour he works. He also takes a lunch break for 1/2​​ of an hour each day he works. Elo
Anton [14]

Answer:

h=50\ hours

Step-by-step explanation:

Let

h -----> the number of hours, Elon works during one 5​-day work week

we know that

12\frac{1}{2}\ h=\frac{12*2+1}{2}=\frac{25}{2}\ h

Elon’s break time must be equal to 1/2​​ of an hour multiplied by 5 days plus  1/5​​ multiplied by the total hours h

so

\frac{25}{2}=5(\frac{1}{2})+\frac{1}{5}h

Solve for h

Multiply by 10 both sides to remove the fraction

125=25+2h

2h=125-25

2h=100

h=50\ hours

8 0
3 years ago
Which statement about the cylinder are true? Select two options
shutvik [7]

Answer:

\ur \: answer)

Step-by-step explanation:

<h2><em><u>THE</u></em><em><u> </u></em><em><u>RÅDIÜS</u></em><em><u> </u></em><em><u>ØF</u></em><em><u> </u></em><em><u>THE</u></em><em><u> </u></em><em><u>CYLI</u></em><em><u>NDER</u></em><em><u> IS</u></em></h2><h2><em><u>\frac{1}{2} x \: units</u></em></h2>

<em><u>THE</u></em><em><u> </u></em><em><u>HEI</u></em><em><u>GHT</u></em><em><u> OF</u></em><em><u> </u></em><em><u>CYLI</u></em><em><u>NDER</u></em><em><u> IS</u></em><em><u> </u></em><em><u>4</u></em><em><u>X</u></em><em><u> </u></em><em><u>UNITS</u></em><em><u> </u></em><em><u>.</u></em>

<em><u>☞</u></em><em><u>ÙR</u></em><em><u> ÃÑSWER</u></em><em><u> </u></em><em><u>HØPE</u></em><em><u> IT</u></em><em><u> HELPS</u></em><em><u> YOU</u></em><em><u> ✌️</u></em>

5 0
3 years ago
use the general slicing method to find the volume of The solid whose base is the triangle with vertices (0 comma 0 )​, (15 comma
lyudmila [28]

Answer:

volume V of the solid

\boxed{V=\displaystyle\frac{125\pi}{12}}

Step-by-step explanation:

The situation is depicted in the picture attached

(see picture)

First, we divide the segment [0, 5] on the X-axis into n equal parts of length 5/n each

[0, 5/n], [5/n, 2(5/n)], [2(5/n), 3(5/n)],..., [(n-1)(5/n), 5]

Now, we slice our solid into n slices.  

Each slice is a quarter of cylinder 5/n thick and has a radius of  

-k(5/n) + 5  for each k = 1,2,..., n (see picture)

So the volume of each slice is  

\displaystyle\frac{\pi(-k(5/n) + 5 )^2*(5/n)}{4}

for k=1,2,..., n

We then add up the volumes of all these slices

\displaystyle\frac{\pi(-(5/n) + 5 )^2*(5/n)}{4}+\displaystyle\frac{\pi(-2(5/n) + 5 )^2*(5/n)}{4}+...+\displaystyle\frac{\pi(-n(5/n) + 5 )^2*(5/n)}{4}

Notice that the last term of the sum vanishes. After making up the expression a little, we get

\displaystyle\frac{5\pi}{4n}\left[(-(5/n)+5)^2+(-2(5/n)+5)^2+...+(-(n-1)(5/n)+5)^2\right]=\\\\\displaystyle\frac{5\pi}{4n}\displaystyle\sum_{k=1}^{n-1}(-k(5/n)+5)^2

But

\displaystyle\frac{5\pi}{4n}\displaystyle\sum_{k=1}^{n-1}(-k(5/n)+5)^2=\displaystyle\frac{5\pi}{4n}\displaystyle\sum_{k=1}^{n-1}((5/n)^2k^2-(50/n)k+25)=\\\\\displaystyle\frac{5\pi}{4n}\left((5/n)^2\displaystyle\sum_{k=1}^{n-1}k^2-(50/n)\displaystyle\sum_{k=1}^{n-1}k+25(n-1)\right)

we also know that

\displaystyle\sum_{k=1}^{n-1}k^2=\displaystyle\frac{n(n-1)(2n-1)}{6}

and

\displaystyle\sum_{k=1}^{n-1}k=\displaystyle\frac{n(n-1)}{2}

so we have, after replacing and simplifying, the sum of the slices equals

\displaystyle\frac{5\pi}{4n}\left((5/n)^2\displaystyle\sum_{k=1}^{n-1}k^2-(50/n)\displaystyle\sum_{k=1}^{n-1}k+25(n-1)\right)=\\\\=\displaystyle\frac{5\pi}{4n}\left(\displaystyle\frac{25}{n^2}.\displaystyle\frac{n(n-1)(2n-1)}{6}-\displaystyle\frac{50}{n}.\displaystyle\frac{n(n-1)}{2}+25(n-1)\right)=\\\\=\displaystyle\frac{125\pi}{24}.\displaystyle\frac{n(n-1)(2n-1)}{n^3}

Now we take the limit when n tends to infinite (the slices get thinner and thinner)

\displaystyle\frac{125\pi}{24}\displaystyle\lim_{n \rightarrow \infty}\displaystyle\frac{n(n-1)(2n-1)}{n^3}=\displaystyle\frac{125\pi}{24}\displaystyle\lim_{n \rightarrow \infty}(2-3/n+1/n^2)=\\\\=\displaystyle\frac{125\pi}{24}.2=\displaystyle\frac{125\pi}{12}

and the volume V of our solid is

\boxed{V=\displaystyle\frac{125\pi}{12}}

3 0
3 years ago
Other questions:
  • Identify the constant term in this expression.
    12·1 answer
  • 10^1 has what place value?
    11·2 answers
  • Which of the following equals the difference between the total surface area and base area of any three-dimensional figure?
    10·2 answers
  • How to get better in math? ;(
    12·2 answers
  • (sinA÷secA)÷(cosA÷sinA) =tan A​
    15·1 answer
  • Does anyone minding helping me with exterior angles ? due in 2 days
    9·2 answers
  • Find the lateral area and surface area of a cone with a radius of 12 and a height of 21
    10·2 answers
  • Aniyah has 10 1/3 feet of ribbon. She wants to cut the ribbon into 1 2/5 size pieces. How many full pieces of ribbon can she cut
    9·1 answer
  • Write 12 more than r as an expression
    10·1 answer
  • Please help with this kenken puzzle
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!