The linear equation is y = -x - 6
Step-by-step explanation:
To form a linear equation from two points lie on the line which the equation represented it
- Find the slope of the line by using the formula

- Then use the slope-intercept form of the equation y = m x + b
- To find the value of b substitute x and y of the equation by the coordinates of one of the two given points
∵ Points (-2 , -4) and (-3 , -3) lie on the line
∴
= -2 and
= -3
∴
= -4 and
= -3
- Substitute these values in the formula of the slope
∵ 
∴ m = -1
∵ The form of the equation is y = m x + b
∵ m = -1
∴ y = (-1) x + b
∴ y = -x + b
To find b substitute x and y in the equation by the coordinates of
point (-2 , -4) OR (-3 , -3)
∵ x = -3 and y = -3
∴ -3 = -(-3) + b
∴ -3 = 3 + b
- Subtract 3 from both sides
∴ -6 = b
∴ The equation is y = -x + (-6)
∴ y = -x - 6
The linear equation is y = -x - 6
Learn more:
You can learn more about linear equation in brainly.com/question/4326955
#LearnwithBrainly
Triangular sequence = n(n + 1)/2
If 630 is a triangular number, then:
n(n + 1)/2 = 630
Then n should be a positive whole number if 630 is a triangular number.
n(n + 1)/2 = 630
n(n + 1) = 2*630
n(n + 1) = 1260
n² + n = 1260
n² + n - 1260 = 0
By trial an error note that 1260 = 35 * 36
n² + n - 1260 = 0
Replace n with 36n - 35n
n² + 36n - 35n - 1260 = 0
n(n + 36) - 35(n + 36) = 0
(n + 36)(n - 35) = 0
n + 36 = 0 or n - 35 = 0
n = 0 - 36, or n = 0 + 35
n = -36, or 35
n can not be negative.
n = 35 is valid.
Since n is a positive whole number, that means 630 is a triangular number.
So the answer is True.
Answer:
i would choose a 3 and color red
Step-by-step explanation:
i still don't understand the question tho
Answer:
- time: t = -0.3
- minimum: v = 0.55
Step-by-step explanation:
For quadratic ax^2 + bx + c, the extreme value is found at x=-b/(2a). For your quadratic, the minimum is found at ...
t = -(3)/(2(5))
t = -0.3 . . . . . time of minimum velocity
__
The value of velocity at that time is ...
v = 5(-0.3)^2 +3(-0.3) +1 = 5(.09) -.9 +1
v = 0.55 . . . . . value of minimum velocity