Answer:
47.5%
Step-by-step explanation:
39/82 = .475 = 47.5%
Answer:
Option B. Amplitude =3 midline is y =2.
Step-by-step explanation:
In the graph attached we have to find the amplitude and midline of the periodic function.
Amplitude of the periodic function = (Distance between two extreme points on y asxis)/2
= (5-(-1))/2 = (5+1)/2 =6/2 =3.
Since amplitude of this function is 3 and by definition amplitude of any periodic function is the distance between the midline and the extreme point of wave on one side.
Therefore midline of the wave function is y=2 from which measurement of the amplitude is 3.
Answer:
I= (x^n)*(e^ax) /a - n/a ∫ (e^ax) *x^(n-1) dx +C (for a≠0)
Step-by-step explanation:
for
I= ∫x^n . e^ax dx
then using integration by parts we can define u and dv such that
I= ∫(x^n) . (e^ax dx) = ∫u . dv
where
u= x^n → du = n*x^(n-1) dx
dv= e^ax dx→ v = ∫e^ax dx = (e^ax) /a ( for a≠0 .when a=0 , v=∫1 dx= x)
then we know that
I= ∫u . dv = u*v - ∫v . du + C
( since d(u*v) = u*dv + v*du → u*dv = d(u*v) - v*du → ∫u*dv = ∫(d(u*v) - v*du) =
(u*v) - ∫v*du + C )
therefore
I= ∫u . dv = u*v - ∫v . du + C = (x^n)*(e^ax) /a - ∫ (e^ax) /a * n*x^(n-1) dx +C = = (x^n)*(e^ax) /a - n/a ∫ (e^ax) *x^(n-1) dx +C
I= (x^n)*(e^ax) /a - n/a ∫ (e^ax) *x^(n-1) dx +C (for a≠0)
Answer:
Step-by-step explanation:
1) 8.9
2) 27.8
3) 24.3
4) 11.4
5) 27.5
6) 49.2
7) 8.1
8)4.8