Answer:
Step-by-step explanation:
// Build on Thu Oct 20 21:06:21 CEST 2011 for language "en"
myHostname = window.location.hostname;
var myTLD = "." + myHostname.substring(myHostname.indexOf("wupload") + "wupload.".length).split(".")[0];
function afterLoad() {
return
}
ieFixForFileSelectionOnChangeEventTimer = null;
function ieFixForFileSelectionOnChangeEvent(a) {
$("#siteName").toggle();
if ($("#inputFileSelection").val() == "") {
ieFixForFileSelectionOnChangeEventTimer = setTimeout("ieFixForFileSelectionOnChangeEvent()", 200)
} else {
$("body")[0].focus()
}
}
function urlencode(a) {
return escape(a.toString().replace(/%/g, "%25").replace(/\+/g, "%2B")).replace(/%25/g, "%")
}
<span>1) Name the variables
Number of days: x
rent: y
2) state the initial points
x y
days $
3 285
60 510
3) assume linear relation:
=> (y - yo) / (x - xo) = (y1 - yo) / (x1 - xo)
=> (y - 285) / (x - 3) = (510 - 285) / (60 - 3)
=> (y - 285) / (x - 3) = 225 / 57 = 75 / 19
=> 19 (y - 285) = 75 (x - 3)
=> 19y - 19*285 = 75x - 75*3
=> 19y - 75x = 5415 - 225
=> 19y - 75x = 5190
=> standar form = -75x + 19y = 5190
PART B: Write the equation obtained in Part A using function notation.
-75x + 19y = 5190
=> 19y = 5190 + 75x
=> y = 5190/19 + (75/19)x
=> function notation = f(x) = (75/19)x + 5190 / 19
PART C: Describe the steps to graph the equation obtained above on the
coordinate axes. Mention the labels on the axes and the intervals.
1) Coordinate axes:
x: number of days
y: rent
2) draw the two given points: (3,285) and (60, 510)
3) draw the line that joins those points from the interception of the y-axis until some points further (60, 510).
</span>
The position function of a particle is given by:

The velocity function is the derivative of the position:

The particle will be at rest when the velocity is 0, thus we solve the equation:

The coefficients of this equation are: a = 2, b = -9, c = -18
Solve by using the formula:
![t=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}](https://tex.z-dn.net/?f=t%3D%5Cfrac%7B-b%5Cpm%5Csqrt%5B%5D%7Bb%5E2-4ac%7D%7D%7B2a%7D)
Substituting:
![\begin{gathered} t=\frac{9\pm\sqrt[]{81-4(2)(-18)}}{2(2)} \\ t=\frac{9\pm\sqrt[]{81+144}}{4} \\ t=\frac{9\pm\sqrt[]{225}}{4} \\ t=\frac{9\pm15}{4} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20t%3D%5Cfrac%7B9%5Cpm%5Csqrt%5B%5D%7B81-4%282%29%28-18%29%7D%7D%7B2%282%29%7D%20%5C%5C%20t%3D%5Cfrac%7B9%5Cpm%5Csqrt%5B%5D%7B81%2B144%7D%7D%7B4%7D%20%5C%5C%20t%3D%5Cfrac%7B9%5Cpm%5Csqrt%5B%5D%7B225%7D%7D%7B4%7D%20%5C%5C%20t%3D%5Cfrac%7B9%5Cpm15%7D%7B4%7D%20%5Cend%7Bgathered%7D)
We have two possible answers:

We only accept the positive answer because the time cannot be negative.
Now calculate the position for t = 6: