Check the picture below.
since the diameter of the cone is 6", then its radius is half that or 3", so getting the volume of only the cone, not the top.
1)
![\bf \textit{volume of a cone}\\\\ V=\cfrac{\pi r^2 h}{3}~~ \begin{cases} r=radius\\ h=height\\[-0.5em] \hrulefill\\ r=3\\ h=4 \end{cases}\implies V=\cfrac{\pi (3)^2(4)}{3}\implies V=12\pi \implies V\approx 37.7](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bvolume%20of%20a%20cone%7D%5C%5C%5C%5C%20V%3D%5Ccfrac%7B%5Cpi%20r%5E2%20h%7D%7B3%7D~~%20%5Cbegin%7Bcases%7D%20r%3Dradius%5C%5C%20h%3Dheight%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20r%3D3%5C%5C%20h%3D4%20%5Cend%7Bcases%7D%5Cimplies%20V%3D%5Ccfrac%7B%5Cpi%20%283%29%5E2%284%29%7D%7B3%7D%5Cimplies%20V%3D12%5Cpi%20%5Cimplies%20V%5Capprox%2037.7)
2)
now, the top of it, as you notice in the picture, is a semicircle, whose radius is the same as the cone's, 3.
![\bf \textit{volume of a sphere}\\\\ V=\cfrac{4\pi r^3}{3}~~ \begin{cases} r=radius\\[-0.5em] \hrulefill\\ r=3 \end{cases}\implies V=\cfrac{4\pi (3)^3}{3}\implies V=36\pi \\\\\\ \stackrel{\textit{half of that for a semisphere}}{V=18\pi }\implies V\approx 56.55](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bvolume%20of%20a%20sphere%7D%5C%5C%5C%5C%20V%3D%5Ccfrac%7B4%5Cpi%20r%5E3%7D%7B3%7D~~%20%5Cbegin%7Bcases%7D%20r%3Dradius%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20r%3D3%20%5Cend%7Bcases%7D%5Cimplies%20V%3D%5Ccfrac%7B4%5Cpi%20%283%29%5E3%7D%7B3%7D%5Cimplies%20V%3D36%5Cpi%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Bhalf%20of%20that%20for%20a%20semisphere%7D%7D%7BV%3D18%5Cpi%20%7D%5Cimplies%20V%5Capprox%2056.55)
3)
well, you'll be serving the cone and top combined, 12π + 18π = 30π or about 94.25 in³.
4)
pretty much the same thing, we get the volume of the cone and its top, add them up.

Answer:
y=350x+125
Step-by-step explanation:
y=350x+125
Answer:
The dolphin will be above the surface of the water for 2 seconds.
Step-by-step explanation:
Solving a quadratic equation:
Given a second order polynomial expressed by the following equation:
.
This polynomial has roots
such that
, given by the following formulas:



The height of the dolphin after t seconds is given by:

According to Micha's model, how long will the dolphin be above the surface of the water?
It stays above the surface of the water between the first and the second root. Initially, it is below water, when the first time for which
it crosses the surface upwards, and then the second time for which
it crosses the surface downwards.
We have to find these roots. So


Multiplying by -16




4 - 2 = 2
The dolphin will be above the surface of the water for 2 seconds.
Answer:
20480
Step-by-step explanation:
4hr = 12 doubles
5 * 2 ^ 12 = 20480