The first option,
both have to be negative, because they were originally both part of the one fraction, which was all negative.
Use photomath. Do not click on the link the other person which is actually a bot put.
Use division or long division (ignore the decimal point)
Then put the decimal in the same spot as the dividend (the number being divided)
Answer:
The calculated χ² = 0.57 does not fall in the critical region χ² ≥ 12.59 so we fail to reject the null hypothesis and conclude the proportion of fatal bicycle accidents in 2015 was the same for all days of the week.
Step-by-step explanation:
1) We set up our null and alternative hypothesis as
H0: proportion of fatal bicycle accidents in 2015 was the same for all days of the week
against the claim
Ha: proportion of fatal bicycle accidents in 2015 was not the same for all days of the week
2) the significance level alpha is set at 0.05
3) the test statistic under H0 is
χ²= ∑ (ni - npi)²/ npi
which has an approximate chi square distribution with ( n-1)=7-1= 6 d.f
4) The critical region is χ² ≥ χ² (0.05)6 = 12.59
5) Calculations:
χ²= ∑ (16- 14.28)²/14.28 + (12- 14.28)²/14.28 + (12- 14.28)²/14.28 + (13- 14.28)²/14.28 + (14- 14.28)²/14.28 + (15- 14.28)²/14.28 + (18- 14.28)²/14.28
χ²= 1/14.28 [ 2.938+ 5.1984 +5.1984+1.6384+0.0784 +1.6384+13.84]
χ²= 1/14.28[8.1364]
χ²= 0.569= 0.57
6) Conclusion:
The calculated χ² = 0.57 does not fall in the critical region χ² ≥ 12.59 so we fail to reject the null hypothesis and conclude the proportion of fatal bicycle accidents in 2015 was the same for all days of the week.
b.<u> It is r</u>easonable to conclude that the proportion of fatal bicycle accidents in 2015 was the same for all days of the week
Answer:
400
Step-by-step explanation:
20%/14% = 1.42857
1.42857 x 280 = 400.