Answer:
See below
Step-by-step explanation:
We want to prove that

Taking the RHS, note

Remember that

Therefore,

Once

Then,

Hence, it is proved
X = -3.
The distance from p(-9, 0, 0) is
d = sqrt((x+9)^2 + y^2 + z^2)
The distance from q(3,0,0) is
d = sqrt((x-3)^2 + y^2 + z^2)
Let's set them equal to each other.
sqrt((x+9)^2 + y^2 + z^2) = sqrt((x-3)^2 + y^2 + z^2)
Square both sides, then simplify
(x+9)^2 + y^2 + z^2 = (x-3)^2 + y^2 + z^2
x^2 + 18x + 81 + y^2 + z^2 = x^2 - 6x + 9 + y^2 + z^2
18x + 81 = - 6x + 9
24x + 81 = 9
24x = -72
x = -3
So the desired equation is x = -3 which defines a plane.
The value of x is 84 degrees
The slope is 3/2
To find the slope, you have to use the slope formula
y2-y1/x2-x1
6-3/4-2
3/2
So the slope is 3/2
Answer: Option A

Step-by-step explanation:
In the graph we have a piecewise function composed of a parabola and a line.
The parabola has the vertex in the point (0, 2) and cuts the y-axis in y = 2.
The equation of this parabola is
Then we have an equation line
Note that the interval in which the parabola is defined is from -∞ to x = 1. Note that the parabola does not include the point x = 1 because it is marked with an empty circle " о ."
(this is
)
Then the equation of the line goes from x = 1 to ∞ . In this case, the line includes x = 1 because the point at the end of the line is represented by a full circle
.
(this is
)
Then the function is:
